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Editor's Comments

Geometry weaves its way as a central subject throughout the twelve-year curriculum of Waldorf
schools. Through this subject, the teacher is able to explore both outer worldly realities as well as the
inner world of humankind. It helps the chxldren attain spatial harmony and develop their growing
powers of analytical thinking,

In the first three grades, the children work at form drawing and dynamic drawing. In the

fourth and fifth grades, they draw geometrical shapes freechand. In the sixth grade, they begin to use

instruments and are challenged to draw figures with greater precision and exactness. At the same

time, in eurythmy they execute geometrical exercises using their entire body. Also in eurythmy,
copper rod exercises help secure the child’s spatial orientation. In the seventh grade, two-dimensional
drawing is continued, and the class spends a good amount of time understanding the theorem of

Pythagoras, as well as perspective drawing and the areas of squares and triangles. In the eighth grade,

exact constructions are continued with a focus on three-dimensional figures, the volumes of solids,

the Platonic solids; and the laws of loci.

In the Waldorf high school, the students investigate dcscnptlvc geometry in the ninth grade— 5

(Euchdcan coordinate; and solid geometry) as well as surveying in the tenth grade, projective geometry

in the eleventh, and descriptive geometry as applied to practical problems in architecture in the -
- wwelfth. The qualxty of logical thinking that is exercised in these sub)ects and the students attention
to bcauty and accuracy are considered vcry important. ' '

This book by A. Renwick Sheen represents his llfc—long work as a Waldorf school teacher. It -

may prove to be invaluable to those of us working with Waldorf education and may be a stimulation

to teachers from all philosophies of education. This text was first printed as a rough manuscript by

the Waldorf Instltute at Garden City in 1970. It is here completely re-edited and published by the

AWSNA Pub]lf‘zmuns through the courtesy of Stephen Sheer, his son.

_' : — David Mitchell
Boulder, CO
2002
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Preface

During the past 30 yéars, I have given many lectures in various European countries as well as
in South Africa on the teaching of geometry. Frequently, after a lecture, I have been asked: “Is there
anything published about what you have told us?” To date, I have had to reply that there are onlya
few articles in various journals and magazines. The present book is, therefore, an attempt to bring
together much of this scattered information. At the same time, it is an expression of my teaching

experiencé during this period to children of all ages at Michael Hall, the oldest Rudolf Steiner school

in England. I must emphasize that nearly all that is in this book represents work that I have done at

various times with different groups of children of ages from 3 to 18. Another teacher could well

. choose quite different themes and examples that would be equally suitable for a particular age group.
This book is written for those teachers of mathematics who are not content with the merely -

formal and logical presentation of their subject but who wish, as-well, to present geometry as a -

cultural medium integrated with other subjects in the curriculum and who also recognize that children

- should experience the facts and laws of geometrical form before the logical proof is presented to

them. Experience through drawing is of far greater value and imiportance to a child than logical-pfqof

‘without real inner experience of a truth. And, of course, such an approach can appeal to 4/l children,

‘whereas the logical proof treatment is often “over the heads” of a number of children in the class. I

must emphasize that because little or nio refefence is made in this book to the more orthodox and
formal aspects of geometry, this does not mean that they are omitted from the curriculum. They can
be found in all the usual textbooks. For examplé, here will be found few formal proofs; proofs should
certainly be given, but only at a later age after the children have gained the experience of a truth or
law by accurate drawings. Or again, the analytical treatment of the conic section curves is an ssential
mathematical study for older children, but it should be preceded by such a treatment as outlined here

to give a full understanding of the nature and properties of these important curves.

19 .
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The method of presentation, then, is concerned with experience through drawing, leading to
a stimulation of the childrens imagination, which as de Morgan says, is “the moving power of
machematical invention.” I have given careful descriptions of the various drawings and constructions,
and I would warmly recommend that teachers do the drawings themselves before giving them to the
children. In the wording of these descriptions, I have often deliberately avoided accepted math-
ematical terminology and used a more descriptive language, as I would do in teaching children.

It may well be raised that the time available for the teaching of geometry in a school curriculum
simply does not allow for such a course of study as suggested in this book, especially when one takes
into consideration the more formal aspects of geometry, which have been omitted. This is a quite
valid objection. I must, however, point out that the course of work described here is not meant to be
given in its entirety. The teacher will naturally choose what he or she feels most suitable for a particular
group of children. It may also be mentioned that in a Rudolf Steiner school, there is a considerable
economy of teaching time, in that whar are called Main Lesson subjects—of which geometry is
one—are taught in periods of three to four weeks for two hours each day (first thing in the morning).
This, of course, means that the children are able to concentrate on a subject, and they can really get a
great deal done during such a period.

I'would like to thank my colleagues, Mr. H. Gebert, B.Sc., Mr. John Davy, B.A., and Bengt
Ulin of Uppsala, for their valuable advice and helpful criticism. T am also indebted to Mr. George
Adams, M.A., for essential help, especially in connection with the chapter on projective geometry. To
Herr Ernst Bindel, mathematics teacher in the Waldorf School, Stuttgart, and to Dr. Hermann von
Baravalle, former mathematlcs teacher in the same school, I wish to tender my thanks for their kind
permission to  refer towork that they have done and that I have often used in my own teaching. My
grateful acknowledgments are also due to the several publishers and authorities mentioned in the text
who have granted me permission to publish quotations, diagrams, and pictures.

Finally, this book could never have been written without the fundamental inspiration of the

late Dr. Rudolf Steiner, the great t_éather of tc;chers for our age.

—A. Renwick Sheen
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Chapter 1

Introduction

Over 100 years ago, the German philosopher and educationist Herbart (1776-1841) said that
he could not imagine any instruction that was not at the same time education, and vice versa, he could
not imagine any education that could dispense with instruction. Today, the majority of teachers in
schools of all kinds would fundamentally agree with such a conception. On the other hand, in actual
practice in the classroom, a great deal of the teaching given to children of all ages is mere instruction
and has little or no relation to their moral nature or to the development of character. These decper
aspects of education are too often left to what is sometimes vaguely called the “school atmosphere,”
though many boys and girls owe a great deal to the fine influence of one or other individual teacher

who, through his or her personality, has brought real moral sfrength into their lives. The same problem

‘is discussed by Lord Elton in his book . George and the Holy Grail(1942), in which he insists that all
j 1mpartmg of knowledge should have a rel1g10us, moral quality. He says, “A Christian education is a

particular kind of education in all subjects.” He also points out that, at the time he is wrmng, therc is-

- “The Nazi school is not a school whlch devores an hour a week to teaching a cergain creed, but a school
' 'whlch teachcs everythmg in a cértain way.” It is a strange thing that a fine ideal can be so dcgraded by

2 wrongful application, and it is one of the ironies of life that this can so easily happen. If teachers

throughout the world today could and would bring the great human and moral values into the classroom

~through the actual materlal of their lessons with anything like the force and thoroughncss with which

the Nazi teachers inculcated inhuman and immoral values into the German children of that generation,

“then they should be well on the road towards achieving such an educational ideal as that outlined by

Herbart. The reason for our failure to do this is very largely due to the great emphasis laid today on an

intellectual form of teaching. The training of the child’s intellect is considered of paramount importance;

this is the result partly of the pressure of examinations at various ages but also of the modern view of -

_ -}one great country of Europe where there is certamly no divorce between-education and i mstrucuon i

21
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child psychology, which tends to look upon children as little grown-ups, with the same kinds of faculties
as the adult, though less developed. Every human being expresses himself in life through the three
faculties of thinking, feeling, and willing. In the being of the child, these simply are not there in the
same way as in the adult man or woman. For example, the thinking of a child of 10 or 11 years of age
is intimately bound up with the life of feeling. It is a feeling-thinking and not yet a logical, intellectual
thinking. The soul expression of children of this age is fundamentally in the realm of feeling and
imagination, and education at this time must go with this and not try to call forth powers that are not
yet properly awake.

In a letter to a friend in 1817, Keats wrote: “I am certain of nothing but of the holiness of the
Heart's affections and the truth of Imagination. What the imagination seizes as Beauty must be Truth . . .
The Imagination may be compared to Adam’s dream—he awoke and found it Truth.” This is the inner
experience of a young child, and as a poet, Keats carried this wonderful power of the imagination into
adult life. Today, our modern intellectual education provides little food for the imagination, and so this
most precious gift of childhood tends to wither and die instead of growing and developing into one of
the noblest expressions of the human soul. The really great people of all ages have been people of
imagination. The great and noble deeds of history are the outcome of the vision of such people and
have often had the most far-reaching effects on the lives of men and women the world over. Just to take
one example from our own day: Sir Winston Churchill, combining imaginative vision with an
indomitable will, more than any other single man, saved the countries of Europe from subjugation by
a ruthless tyranny. It is worth noting that, according to his own confession, he was a dull scholar at
Harrow, judging by ordinary intellectual standards. Perhaps it was just because he unconsciously warded
off the deadening effects of over-intellectualism during this early school years that he was able to preserve
into later life a great power of imagination and immense forces of will. ‘

In the light of what has been said, we are now in a position to give answers to some very
important questions that should surely be asked concerning every subject that a child learns at school.
Why should children learn geometry? Assuming there are good reasons for its inclusion in the curriculum,
then when should the first lessons in geometry begin? And lastly, how should geometry be introduced

and continued through the school?

Why should children learn geometry?

There are two obvious answers: Everyone needs to know the elementary laws and properties of
the simple geometrical ﬁgures;—the circle, triangle, square, rectangle, and so on—which we see everywhere
around us and which we use in all kinds of construction; then the study of these laws and their sequence
of proof as in Euclid is a fine exercise and training for the powers of logical thinking. The first of these
reasons is clearly of utilitarian value and belongs more to the sphere of instruction only; the second

reason combines instruction with education. But there is still 2 much more fundamental reason for the
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"?""n lusion of geometry in a school curriculum, and it is with this that this book is chiefly concerned.
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“Plato once said, {God is cternally’ geometrlzlh'g,; and if we can gain some idea of what these words
really signify, we shall realize that geometry is a fundamental subject in all education and has not only
‘the utilitarian value referred to above but can become a source oﬁ'd'e'e'p'fmo'ril'sig_'nifﬂ'c'aﬁé?fo'r‘th’E_fW}io:ljr“
t{dfflife‘i Everywhere around us we see the manifold forms of nature: the great variety of crystal shapes
with planar faces and sharp, straight-line edges; the infinite metamorphoses of form in the plant world,
mostly curved forms; the complexity of shape of different animal species; the form of man; the various
microcosmic forms of cell structure within the kingdoms of nature; the majestic macrocosmic curves
traced out by the heavenly bodies in their orbits. These are all expressions of geometrical law at work in
the earth, on the earth, and in the universe. Furthermore, if we can learn to know something of the real
structure of space itself, then we shall achieve a more fundamental understanding of the manifold forms
that exist within space. A study of projective geometry will help us towards such a knowledge, and the
last chapter of this book will suggest how this subject may be presented to older children.
Concerning projective geometry, Morris Kine, professor of mathematics, New York University,
- says, “ The contents of all four geometries are now incorporated in one harmonious whole!” This aspect

of geometry is, therefore, of fundamental importance in this book, and its forms of thought have been

introduced into earlier chapters. It is therefore evident that geometry is an essential subject of a school -

curriculum from the point of view both of instruction and education, and we may now consider the

next question.

When should the first lesson in geometry begin?
Just as there is the rlght moment for the little child to stand upright and take her first unsteady

. steps, so there is the right moment for her to begin to learn the three R, to hear aboutithe hlstory of the .

: Romans for the first time, to be introduced to the world of scientific phenomena in ph}’SlCS and chemxstry

:The modern tendency is to hurry everythmg on and to teach children sub;ects, or drfferent aspe‘ets of

v'-sub)ects too early, before their i inner development 1s mature enough for them to really grasp wha they

- are bemg taught This often has the effect of forcmg the 1ntellectual development 'prematurely, and this,

~example, the i imagination. No sane mother would ever encourage her small child to walk before she saw -
that he was ready for this great adventure; she knows that if she did, the result would be disastrous and -
probably lead to deformrty for life. In the sphere of the soul, the effect of bringing intellectual teaching
too early to chrldren is crippling to their full human capabilities and may even lead to actual bodily
infirmities in later years. Many parents today are proud of the fact that their boy or girl can read, write,
and do simple sums at the a;ge of four or five. How much better it would be for the future development
of their child if they were proud of the fact that he could not do any of these things at thi

of the efforts of his teachers!

g of course, can be done, but only at the expense of othcr facultles, which thereby become enfeebled—for .
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This modern tendency is illustrated most strikingly by an advertisement that appcarcd about
thnrry years ago in one of the leading English Sunday newspapers. It was headed: “WANTED—A
SCIENTIST of the first order, if necessary of senior standing, but as young as possible, with a knowledge
of the theory of science, to investigate and conduct the introduction of young children, 4-10, to science
and scientific method.” Then followed a long statement of the problem, which contained this sentence:
“It is as yet uncertain whether there exist any special factors limiting or making undesirable the
introduction of children of 4-10 to scientific knowledge and scientific thought.” Towards the end, the
advertisement said: “In order to be able to obtain the services of the man most suited to the work, they
are advertising widely and they are prepared to pay such salary as will enable him to leave his present
occupation, -hatever that may be.” The word #hey refers to the directors of the school who inserted the
advertisement, which ends with the names of two very eminent scientists and one very eminent
educationist who “have kindly consented to assist the directors in the final selection of candidates.”
Perhaps a fair comment would be that parents and teachers who have any real fecling for the being and
nature of a little child should be as indignant and angry at such a project as they are when, from time to
time, they read in the daily press of a case of physical cruelty suffered by a child, and they might well ask
for the establishment of a National Society for the Prevention of Mis-education of Children. To be just

to the promoters of the scheme, they obviously considered it in the nature of an experiment involving,

by their own confession, possible uncertain factors that might make it undesirable to continue the

experiment. Such is the ignorance of modern humanity concerning their own nature and inner
development, that these educationists failed to recognize that the one .quitc certain factor before them
was that scientific knowledge and especially scientific méthod, as these are conceived today, have no
relation whateve; to the real natural inner development of children from 4 to 10 years of age.

In 1935 a noteworthy book was published with the challenging title-of Man the Unknown. The
author, Alexis Carrel, was the chief biologist at the Rockefeller Institute in the United States, and the
theme of his bokaas that the great scientific achievements of our age do not include any real knowledge
of the nature of the human being. Although this book was written twenty years ago and the advertisement
appeared some ten years carlier, science has made little or no advance towards an answer to Carrel’s
challenge, and educationists still carry out experiments on children, which through ignorance of their

“material,” may ofren prove highly dangerous. The headmaster of a well-known boys’ school once said
that he consideréed modern education to be a criminal occupation, and undoubtedly he regarded himself
as one of the arch-criminals!

And yet Carrel’s challenge has been answered but not from the direction‘ of orthodox science,
and moreover it was answered in the early years of this century long before his book appeared. In
Rudolf Steiner’s teaching, modern man can come to a real understanding and knowledge of his true
nature in body, soul, and spirit. If we are not willing to study such a knowledge, it is simply because we
are at the mercy of cur ordinary habits of intellectual thinking and will not make the effort to break

through to new conceotions. In his book, Carrel says: “We cannot undertake the restoration of ourselves
: y .
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d our environment before having transformed our habits of thought.” The philosophy of Rudolf

te nerwould fully endotse this statement, and furchermore he shows us how we may carry out the

transformatlon

Today, education need no longer be “a criminal occupation,” for in 1919 with the founding of

" the famous Waldorf School in Stuttgart there came into being an educational movement that has

grown to include over 900 Rudolf Steiner Schools around the world. Teachers in these schools do not
experiment with children but strive to educate them through insight into and knowledge of their
natural inner development derived from the “picture of the human-being” as given by Rudolf Steiner.
(For those readers who may wish to know more about the principles and ideals of Rudolf Steiner
education, a selected list of books and pamphlets will be found at the end of this book.)

To return, then, to our question, we must first consider the essential nature of our subject,

~ geometry. Among all subjects in a school curriculum, this is one that appeals fundamentally to the

intellect and demands for its study a thinking that is clear and logical. Certain aspects of geometry, as
we shall see, also require for their understanding and interpretation a thinking that is not only logical

but has a certain imaginative quality—an imaginative thinking. Now the child of elementary school

| age up to about 12 years lives mainly in the experience of feeling-imagination. The words of Keats

“quoted earlier belong essentially to this age of childhood. The thinking of such a child is a feeling-

thinking. The logical nature of the life of thought does not naturally come to full expression in the soul

of the child until the time of puberty ar about the age of 14 years. (Of course, as we have pointed out, -

= logreal thinking can be and generally is “forced” prematurely in much of our mis-education today.) The

prOcess within the soul of the child, of passing over from a mere feeling-thinking to a logical thinking

isa process in time, and we find that in most normal children it starts at about the age of 12 years. In

f—-___.--_ﬁ__h-;
. other words, we may say that at the 4ge.of-12 the boy ot giil begins to antrc1pare the change that is!
o _commg at puberty._when the faculty of logrcal "thinking becomes awake? So if we bring together the

B essenual nature of the subject to be taught and the inner soul quahty of the child, we see that the

{teachmg of geometryrshould begm at about the : age "of 12.years, 124year3r At this moment, provided the subjectj -

_' Qtroduced in the rlght way (see Chapter 3), chlldren have a real inner relatronshrp to geomctry

How should geometry be introduced and continued through the school>

Itis the object of the following chapters of this book to give one answer to this question.

The author is aware that, during, say, the past eighty years, attempts have been made by individual
teachers in many different schools to bring a more imaginative element into the teaching of geometry.

One such noteworthy contribution is that ofiMrs. Edith i;i_o_rrleryeﬂ?who wrote a valuable little book

entitled W Rhythmic Approach. to Mathematics"as long ago as 1906; her ideas were put into practice in
several schools including Bedales. (Reference will be made again to this work in Chapter 3, “First

Lessons in Geometry.”) There have been many children who have greatly benefited from such imaginative
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.methods used by individual teachers who have had an instinctive insight into the real needs of their
pupils. At the same time, it must be recognized that the usual approach has been, and still is, the
intellectual one demanded by the examination system. In what follows, the attempt has been made to
indicate a method of treatment of the subject that springs not just from the ideas of an individual

teacher but belongs essentially to the ideas and ideals of Waldorf education as a whole.

+
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Chapter 2

Pre-Geometry

In the previous chapter, we have seen that the right‘age at which children should begin lessons

in geometry is about 12 years. Before this age, however, in many schools today, children gain an expe- -

rience of geometrical forms in other lessons, and this is an excellent preparation for the more formal ™
work they will do when they are older. One might even say that it is an essential preparation.

Most teachers today recognize that, especially for little children, movement and rhythm are a
very important means of expression and must take their place in a well-balanced curriculum. In some
schools, lessons are given in Dalcrose eurhythimics! while in others, teachers will “invent” their own

movement lessons. In a Waidorf school all children are taught eurythmy, an art of movement which

may be described as mlgg_ﬁﬁéech and v1sﬂ§1¢ song; (see List of Selected Books). In such lessons, the

 children move in certain forms on the floor of the room—circles, squares, triangles; pentagrams,

lemniscates (figures of eight)-—ind-they should learn to walk or run those forms accurately.and precisely. .

So they experience many of the forms of geometry through the body in rhythmxc movement, and such

activity can give children avery fundamental feeling f for form. Ax,tually, all our cxperlence cfouter form

cither side of us and in such an obscrvatlon become aware that our gaze is travelling along the stone

tracery of the arch. So in every observation of form, however small, our eye “travels round” the foom,

but gencrally the movement is so slight and so quick that we are not conscious of it. In fact, weare really

Snly-conscious of such @ process when the e following of a fo:m with the‘eyc,mvolves movmg_the ¢ head.

Thus, movement and the expenencc of form are closely related, and little children who have an
opportunity to carry our such exercises in movement will gain a firm inner feeling for the forms they

will later study in their geometry lessons. .

¥

‘ _comes to us through movement, though generally we are not conscious that this is so. We may go into

-+ 4 great cathédral and, standmg in the nave, observe the form of a Gothic arch camcd by the pillars on -
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Another activity that small children enjoy is frec-hand pattern drawing, and if dirccted to express
principles of balance and symmetry, this too is 2 good foundation for later work. From quite an carly
age, a child experiences the symmetry of right and left, which belongs to his own body, and this inward
experience he is quite ready to express outwardly in the drawing of balanced, symmetrical forms. The
following drawings (Fig. 1) are copies of such work done by children of between 7 and 9 years; the
actual drawings were, of course, carried out with colored crayons.

In early arithmetic lessons, the relation between number and form should be introduced. For

" example one may arrange 12 golden stars (cut out of paper) evenly spaced round a circle against a dark

2&?

blue background. Now ask the children to take stars away so as to leave first 6 and then only 3 in as
good an arrangement as possible (Fig. 1a). It is interesting to observe how some children will immediately
see what to do so as to arrive at the hexagon form of the number 6 or the triangle form of the number
3, while others will remove the stars so as to leave quite unsymmetrical arrangements. Or again, one
may ask the children to take 4 or 8 stars and arrange them ina perfect form or pattern (Fig. 1b). It s
good even at this early age (7 or 8 years) that children should come to realize that each number is related
to a form or pattern. They naturally enjoy seeing how the 6-form (hexagon) arises from the 12 by

taking away alternate stars and how again by removing alternate stars, the 3-form (triangle) is left.
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A very vital principle of all education is that of@iecamorephosns.ISomcthmg that is taught to a

small child may in later years become transformed into 4 capacity it is a well-known fact today that the

Fslumbering intellectual pawers of many_backward children can be awakened into lifc by working tliroughi?

the activity of the limbs, for example,.in_various kinds of handworkAll chiildrehi of 7 or 8 should be
taught to knit, not only because knitting is a uscful thing to learn, but because the activity of joining

one stitch to the next with great exactness can become transformed in later life into a capacity for clear

logical thinking. We even speak of ‘i\gell;knit;thougﬁig' Respect for authority_ during childhood’is the

S— e N - ..
foundation for self-confidence and inner responsibility 1n the adult! Or again, if we foster the natural

" reverence and wonder that the small child has for all that is around her—and how little this is done
today!—then such feelings are metamorphosed into moral strength and the power to give blessing in
old age. So, if during the school years, children are given a strong feeling for balance and symmetry of
form, then when they are grown up they are more likely to be able to make balanced and wise judgments
in life. If we become more and more sensitive to these relationships, we shall realize what an immense
amount we can do in the classroom, through the actual material of our lessons, towards building the
character and inner moral strength of a future generation.

It is customary today to give children intelligence tests as a means of determining the group to
which they belong so that children with similar I.Q.s may be taught together. Surely an 1.Q. tells us
about ohly a part of a child’s spiritual capacities,.and as educators we should wish to know far more.
The incapacity of a child to express herself in the drawing of symmetrical and balanced forms is a very
important indication of her development, and tests carried out by such simple exercises—taken, of
course, in connection with other observations—will often reveal to the educator the necessity for special

treatment and special methods of education.
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Chapter 3

First Lessons in Geometry

The first lessons in any new subject are of the greatest ifnportancc, and the teacher should take
special care in preparing such lessons that they may make a deep and lasting impression on the receptive
mind of the child. The wise teacher will tell his or aer children that in a few weeks’ time they-will begin

to learn a new subject—geometry. She may tell them that they will be doing accurate drawings with a

very sharp pencil, using ruler and compass. ifo.ls ilo.lead € chlldren in_this_way_towards the * “Gnknown”_or

‘only_half-known” is to arousc theif interestin n and eagerness f for “the lessons that are to_come: The word

- geometrywill be a new and mysterious name to awaken in the children keen anticipation. If the lessons

are to live up to this expectation, the teacher will have to answer this question: Within the sphere of

geometry, what is there that belongs quite natusally to the ordinary experience of children of 12 years

old? If such a question concerning this and other subjects were taken seriously, young children would
be saved a great deal of abstract intellectual tedchmg that has no relationship to their own inner nature.

This is especially the case in the more scientific sub]ccts in the school curriculum. Professor J. J. Findlay .

bl

- in his book, e Schmrefers to this problem: “We may take as an \.xample the efforts at reform made

by Herbert Spenccr (1861), excrtcd through those four famous essays on Education. Spencer voiced the

progressive opinion of his time on behalf of science: The children are bemg depnved he declared, of

- knowledge about all that lies in most direct relation to their needs; they possess bodies and are ignorant

of physiology; even the mothers and daughters know nothmo of the laws of nature which underlie the -
vital concerns of our domcstlc life. He succeeded in moving pubhc opinion; those who controlled the
schools became genuinely in earnest to atouse in the young a desire to learn about these things, and

South Kensington examined millions of children in physiology and the laws of health. The result

* certainly has not met the hopes of those who started the scientific movement in schools. Undoubredly

they have succeeded in establishing the prestige of science: It is placed side by side with the more
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venerable pursuits of the academy, and all the machinery of learning is available on its behalf: It takes

rank, with its logic, its text-books, its examinations, as part of the cultural system; the scientific man

claims equal rank with those who profess more venerable cults. Bue, while thus elaborated and orga-

nized to suit the tastes of adult thinkers, the pursuit of science loses the very qualities that make it of

service to the young. Chemical atoms have no advantage over Greek particles unless the advantage
becomes part and parcel of values realized and appreciated by the school-boy; physiology may be im-
mensely important for the welfare of mankind, but all the exhortations of anxious reformers will not
compel the young to care about it unless it can be brought into relation with their crude and unorga-
nized experience.”

What then, within the range of the subject we are considering, belongs to the child’s “crude and
unorganized experience?” There is, of course, not just one answer to this question, and so the teacher is
free to choose his starting point. What now follows is the answer of one teacher; others might choose a

different approach.

Let us consider the form of the human being, Here we see a fundamental polarity of form.

expressed between the rounded spherical shape of the head and the straight line of the limbs. (We need
not be concerned at this stage that the head is not an exact sphere, nor that the arms and legs do not
fulfill the definition of a geometrical straight line.) The point is that the roundness of the head and the

straightness of the limbs belong to the experience of every child, and this polarity of form is expressed

everywhere in nature. Between roundness and straightness there lies every kind of curvature. Straight

lines and plane (flat) surfaces belong fundamentally to the mineral world as we see in all the different, -

crystal structures. In the world of life—plant, animal, and . man—we find an endiess varicty of curved
forms. In the movements of sun, moon, and stars, we follow majestic circlings across the heavens from
their rising to thelr settmg 'So one directs the children’s attention to the manifold forms in nature and
natural processes cht, one can pass over to a consideration of man-made forms—for example, in
architecture, artistic creations, machinery, and so on: the simple roundness of an Eskimo igloo, the
spherical dome of a great cathedral, the square tower and delicate triangular spire of a church, the

rounded Roman and pointed Gothic arches, the rectangular forms in the classroom, the fine curve of a

bridge spanning a river, the beautiful curves. of a Greek vase, the comphcated forms of a v1ohn, the -

combination of roundness and straightness in a wheel with its spokes, and so on. The chlldren will be

eager to give these and many other examples of form in nature and in the world around them.

The circle has always been considered as the most perfect of geometrical figures. Right up to the
time of Kepler (1571-1 630), astronomers and philosophers conceived that the heavenly bodies, being
themselves perfect, must move in circular orbits, and even he was reluctant to abandon the beauty and
simplicity of circular fnotion in favor of the ellipse (which, after all, is only a projection of the circle).
With such a perfect and fundamental figure, then, children may begin their lessons in geometry. They

will delight in using their compasses and, by doing various drawings and designs, will learn the simpler
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{aws of the circle. (The measurement of the circle and the significance of 7t do not concern these first

“ lessons.) The first two drawings (Figs. 2 and 3) illustrate the important fact thart circles are always

Zxacily the same shape and that one circle can only differ from another in the matter of size. The
children should observe that in drawing a circle, their compasses remain stretched always the same
distance, and they must learn ro hold them so that they do not squeeze them! This will lead them to see
_that the circumference is everywhere the same distance from the center and that by altering this distance
 (the radius) they can draw larger or smaller circles. The second drawing (Fig. 3) clearly demands much
greater accuracy than the first. The third drawing (Fig. 4) may be considered as the fundamenucal circle
design and again needs real accuracy in the use of the compass. It illustrates the fundamental law of the
circle that the radius can be stepped off exactly six times round the circumference. Figs. 5 and 6 illustrate
designs involving a repetition of Figs. 3 and 4, and Fig. 7 shows the circling of a circle. Of course, after
such work has been carried out accurately in fine pencil line, the drawings should be artistically colored,
shading with colored pencils. (This also applies to all the drawings that follow. Sometimes it is better
‘only to color the lines and not do any colored shading. The coloring shouid also be related to the form
and to the changing or movement of the form if this occurs.) This activity of coloring is not a waste of
time; on the contrary, it gives the children a greater understanding for the form they have drawn and

also an'cnhanéed appreciation of its symmetry and beauty. Other and more complicated circle designs

will be illustrated later involving straight-line forms.
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Fig. 8

The simplest of straight-line geometrical figures is the triangle, and our method of teaching
geometry in pictures will now concern itself with this figure and its laws and properties. Unlike the

circle, the triangle may have many different shapes, and we start with the artistic, perfect form, the

equilateral triangle, and evolve the others from it as illustrated in the two following drawings (Figs. 8

and 9). In the first one, the equilateral triangle is metamorphosed into a family of isosceles triangles,
and in the second, into a series of scalene triangles. The children should become quite conversant with
these names and their meanings: equilateral (Latin), equal sides; isosceles (Greek), equal legs; scalene
(Greek), limping, uneven."A man standing with his legs apart makes an isosceles triangle with the
ground; if he limps as he walks; then oﬁe.leg 1s {onger than the other and his legs make a scalene triangle
with the ground. Again the children can invent many designs on the basis of these two drawings,
which, with careful colofing, afford them real pleasure. Such design is shown in the third drawing (Fig.
10). o ' '

-
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Before proceeding to the naming of triangles by their angles the concept must be made clear:

Acpte  (sharp) angle ¥ Obtuse (blunt) angle Right an%lp’ﬁ«R!\ght angle

5 L 4

»

Fig. 10a

The right angle is formed by the balancing position of the rotating arm when the angle is neither acute -

nor obtuse (Fig. 10a). Thus we can have acute-angled triaﬂéleé, obtuse-angled triangles, and right-
angled triangles. To ensure that the children are quite famiiiar with the different kinds of triangles, it is
a good exercise to ask them such questions as: Is it possible to have a right-angled equilateral triangle or
a right-angled isosceles triangle? Is an obtuse-angled' isosceles triangle possible? From the drawings they
have done, they will easily see that an equilateral triangle has not only all its sides equal but also all its

angies equal, that an isosceles triangle has two equal angles, and that in a scalene triangle the angles are

~of different §i£es. Now there will follow a series of drawings illustrating the laws and properties of

triangles, and these will involve such simple constructions as bisecting a line, bisecting an angle, drawing

one line at right angles to another from a point in the line or from a point outside it, and the drawing

of one line parallel to another.

Fig. 11 " Family of equilateral triangles; sides are halved and areas are quartered.
Fig. 12 Family of right-angled triangles; angle in a semi-circle is a right angle.
Fig. 13 Exterior angle of a triangle equals the sum of the two interior opposite angles. Also,

alternate angles between parallel lines and a transversal are equal, and corresponding
angles between parallel lines and a transversal are equal.

Fig. 14 The three angles of a triangle are together equal to two right angles.
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about cach of middle

Equilaceral triangle divided into six right-angled triangles. Fold
xample of three-fold

lines in turn and a shaded triangle comes on a whitc triangle. E

symmetry.
:, Flg 16 Movement of equilateral triangle towards and beyond the center of a circle.
Fig. 17 Interlaced equilateral triangles in a circle.
" Fig. 18 A modification of Fig. 17.
Fig. 19 A 24-sided regular polygon in a circle with all its diagonals. Each of the 24 angular

points is joined to every other one, and there are altogether 276 straight lines in the

figure.

This last drawing (Fig. 19) is one that many children greatly enjoy doing, and itis a good exercise for

joining two points accurately by a straight line. It is fascinating to see how the lines weave together to

. form the envelopes of concentric circles 'expanding_ rhythmically.

Fig. 11
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Fig. 19

We now come to four-sided ﬁgures———quédrilaterals—-and take our start from the most perfect,
that is, the square, which has all its sides equal and all its angles right angles. The following drawings are
designs based on the square, Fal[g 2 correspohds to the triangle drawing (Fig. 11); ‘heré-again,-the sides
are halved and the areas areqﬁagtg&d. Figs. 21 and 24 are star designs in which we see the figure of the
octagon arising and also that the line forming the star is “c.onti_nuous,” returning to its starting point.
Again, these designs involve constant practice in the simple geometrical c'on.strx_lctions, A

From the square we pass over to the next most 'pcrf.cct quadtilaterals: the rectangle, which has
all its angles equal (right angles) and its opposite sides eqﬁa'L and _the»rhor'nb'us which has all its sides

equal and its opposite angles equal. Figs. 26 and 27 show families of these figures Ialrising from a square.
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Fig. 26 is of particular inrerest and importance in that the recrangles and dic squarc liave.been

rodrawn chat ticy arc all of-cqual. arca. It will Benoted that if the corners of the recrangles and square
0rners recta 3t

1 ~u»arc*;omcd By smooth curves, we obtain_two_rectangulac_ hyperbolae? If now we draw in a similar

configuration a family of fliombuses having the same arca ! (Fig. 27) (the angulac.poines of such rhombuses’

fmove along the rectangilar axes in 1 geometrical progression), then we see.thac.the.sides.of.the. figure$

forma pairof rectangular iyperBolac I hat is, the curves may be drawn touching che sides. If sufficient
thombuses are drawn, then the hyperbolae appear just as the circles do in Fig. 19.T hus in Fig. 26, we
have a foundation construction for a point-wise hyperbola and in Fig. 27 for a linc-wise hyperbola. Oof
course at this age we are not concerned with considering this curve, but it is of importance that children
should carry out such elementary drawings that have within them real significance for more advanced

work. .

Fig. 20
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Fig. 27




Fig. 29

e o

"} When the children come to study the conic section curves at the age of 15 or 16, then the teacher will
S0 W N - : y e curve g .

be able to refer to such ¢arliér work. Fig. 29 is a design of thombuses,
is an intércsting'ﬁgurbe and, although built up out of eight rthomBus

Inore squares appear of two different sizes and many right-angled isosceles triangles of three different

two on each side of the squars; it
es, derived from a square. Eight

sizes.

Following these more reguiar quadrilaterals, we come to the parallelogram, which has opposite

sides parallel and opposite angles equid, and the trapezoid, which has only one pair of parallel sides.




‘ ¢

Figs. 30 and 31 show familics of parallclograms and trapezoids developed from a square. The remaining

possibilities arc irregular figures char are simple, called quadrilaterals.

In Fig. 30 we have a family of parallelograms on the same base and beeween the same parallels ~

as the “parent” square, or, expressed in another way, the parallelograms and the square are on the <aime
base and have the same height. Figs. 32 and 33 demonstrate the fact that the parallelograms all have the
same area as the square, that is, the area of a parallelogram is the product of the base and the heighte.
From this, it follows directly that the area of a triangle is half the product of the base and the height, for
every triangle can be considered as half a rectangle or parallelogram (the diagonal of a parallelogram
bisects it) (Figs. 34 and 35).

In the next set of drawings, we see how one or other four-sided figures can arise from another
quadrilateral by a simple construction, that is, the bisecting of the sides or the angles. Fig. 20 shows
how a square arises when we bisect the sides of a square; here, we may say, the perfect form “gives birth”
to the perfect form. The next two most perfect forms, the rhombus (equal sides) and the rectangle
(equal angles), produce one another alternately by the same construction—bisection of sides (Fig. 36).
This drawing is of real significance for later studies when the children are much older and learn some of
the fundamentals of projective geometry (see Fig. 1). For the families of thombuses and rectangles
arising in this way, we see that the sides are halved and the areas are quartered. By halving the side of a
parallelogram we get another parallelogram (Fig: 37); two families of similar parallclogram.s arise. By
the same construction, a trapezoid creates a parallelogram (if the trapezoid is symmetrical, the
parallelogram is a rhombus), and a quadrilateral also creates a parallelogram (if the quadrilateral is
symmictrical, the parallelogram is a rectangle)'(Figs.Qé}, 39,40, .and 41).
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Fig. 33
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f the angles of a squarc or of a rthombus are bisccted, no figurc ariscs; we get only a poine (Figs. 42 and
-«43) In boch these figures, the diagonals biscct the angles. A square is formed when we biscct the angles
of a rectangle (Fig. 44), and a rectangle arises when we bisect the angles of a parallclogram (Fig. 45). Fig.
46 is a combination of previous drawings, starting with a quadrilateral and alternately bisecting sides
and angles of the resulting figures. .

Again considering this principle of bisccting the angles of a quadrilateral, it is of interest to
approach the problem from the parallclogram (Fig. 45). Since the opposite angles are equal, it is clear

that the bisectors of these angles are two pairs of parallel lines that create a rectangular cell; as the sides

together and the rectangle becomes progressively smaller. When the parallcldér&n becomes a rhombus,
that is, when the sides are all equal, the rectangle shrinks to a point and the parallel lines coincide to
form the diagonals of the rthombus (Fig. 43). The four right angles of the rectangle remain but are
transformed into the four right angles of the crossing diagonals. The children can readily follow such a
process of metamorphosis in their imagination, and the thoughts invoked by the “picture” lead to the
realization that the diagonals of a rhombus bisect one another at right angles. Such a metamorphosis
through movement is a most valuable exercise for the developing thought life of the child. There is, of
course, a correspondiig inetamorphosis starting from a rectangle and ending with a square (Figs. 42
and 44).

Fig. 47 shows a very interesting configuration based on what we have called “the fundamental
circle drawing” (Fig. 4). The whole page is covered with this basic design, and then a network of parallei
lines is drawn joining the centers of the circles vertically, horizontally, and diagonally. It will be seen

that, with one exception, all the three- and Fonr—clderl ﬁonres we have dealt with so fr are to be found

in this ¢ framework the square is the only one that is not to be found. Further, this fundamental circle

straight lmes drawn in:

L

E of the parallelogram become more and more nearly equal, these parallel bisectors move closer and closer

design also iliustrates some important properties concernmg circles, one of which is shown: A tangent

followmg drawing (Fxg 48), which is a small section of the { basic c1rclc “framework” with the appropnate‘ |

1o a circle is at right angles to the radius at the pomt of contact. Other c1rclc properties are shown i in the .
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le (a) : Angles in the same segment of a circle arc equal.

de(b):  Theangle at the center of a circle is double the angic at the circumference standing on

the same arc (also illustrated in circle (c)).
Circle (o) : The angle between a tangent to a circle and a secant is cqual to the angle in the alternate

SanlCllf.

As well as the discovery of individual geometrical figures and their laws and properties within
this network of circles and straight lines. circle drawing also forms a basis for the most varlcd designs.

One may say that almost the whole of elementary geometry is contained in such a fundamental cxpressnon

of two-dimensional space, and it is a fine educational experience for children at the commencement of
their studies in geometry to discover the variety of forms that naturally belong to this space. The
drawing of the framework itself is also a fine exercise for care and accuracy and gives the children great
pleasute in finding how the circles and lines weave together with such wonderful harmony and symmetry.
We shall have cause to refer to this again in the later chapter on projective geometry.

As a kind of culmination to these studies of the simple geometrical figures, we may deal with
one of the most important theorems in geometry: the theorem of Pythagoras. The demonstrations of
the truth of this theorem that we shall now consider involve certain facts about triangles, squares, and
parallelograms that we have already considered. The well-known statement is as follows: The area of
the square on the hypotemtse of a right-angled triangle is equal to the sum of the areas of the squares
on the other two sides. In his great work, Mysterium Cosmographicum (1596), Kepler speaks of two .

,thmgs in geometry as of the first importance about which everyone should know: the theorem of
' Pythagoras and the geometry of the pentagram. (To this second theme the next chapter will be devoted.)
.. There are many different proofs and demonstrations of the truth of the theorem of Pythagoras. One of
| " the earliest is Chinese, frora the Book of Chou Pei Suan King, probably written about A.D. 40, but
* considered to come from a source before the time of Pythagoras. And five of six thousand years ago, the

Egyptians and Babylonians used a speaal case of this law in their method of “squaring the temple.”

That is, they knotted together three pieces of rope of lengths propomonal t0 3, 4, and 5 and pegged
this down on'the ground at the knots, thus obtammg a rlght angle. The proof of this law best known in

, the Westetn world is that of Euclid (Euchd I 47) in ‘which we have a logical argument based on-a

number of other procfs that have gone before. In our own school days, many of us were mtellectually '
convinced of the truth of Pythagoras, but we probably had no real experience that the area of the two |
smaller squares together made up the area of the large one. And to know something with the head only
is to half know it or perhaps, even, to not really know it at all. At the age we are here considering—12
or 13 years old—it is of the greatest importance that children should gain a real experience of what they
are learning by seeing it and doing it. Then later, when children are 15 or 16, the intellectual proof

based on logical argument can rightly come as a kind of complement; then they will “know” with their




whole human nature and not merely with a part of themselves. The following drawings illustrate two
different demonstrations that the children can carry out and then see for themselves thar the large
square is equal in area to the sum of the other two. The first is a “cutting out” exercise and is shown for
an isosceles right-angled triangle ani rhen fior any scalene right-angled triangle (Figs. 49 and 50). The
second is a “movement” demonstration (Fig. 51a, b, ¢, d, and ¢}, and to understand Fig. S1d, the
children must, of course, have experienced the ek of the PIOPOSitioii thas parallelograms on the same
base and between the same parallels are equal in area. The teacher may therefore prefer to leave this

demonstration until this fact has been dealt with.
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figures. In this connection it is interesting to note that once upon a time, the value of land was probably

reckoned by how much corn or rice could be grown upon it. This method could be also a‘doptéd'to

show the truth of Pythagoras by Sprinlding sand evenly over the three square “fields,” then collecting

the sand from the two smaller fields into a litde heap, and seeing that this was the same size as the heap
collected from the large field. Obviously, one could only get an approximate res::lt, but such a procedure
does give children a real feeiing for _Whaf th'e area of a surface signiﬁés, o

~ In the in_troducfo;y;chaptér’, reference was made to the manifold forms of nature and their

relations to pure geometrical forms, and it was pointed out that jc should be a vital part of education jn

be seen in the fossils of sea lilies of crinoids. Figs. 52a and b are sketches of the two sides of such a
calcarous fossil drawn full size; it js slightly convex on one side (Fig. 52a) and concave on the other and
shows a five-petaled flower form, wonderfully symmetrical, while the whole cellular structure of the
fossil is hexagonal. Sea lilies are sessile echinoderms related to starfish, britcle stars, sea cucumbers, and

so on. They are thus starfish that have been turned upside down and affixed to the bed of the sea by
stalks of varying length.

4




Fig 524, b

In the next series of drawings showing the continuous metamorphosis of a triangle according to

.a quite definite process, we sec how the straight-line form of the triangle passes over into curves that are
- clearly similar to well-defined leaf forms. Rays are drawn from points in the sides of an equilateral |
- triangle to the center of the triangle (and beyond it as necessary). Then each point in the sides-is moved
along irs own particular ray towards the center the same distance; this construction is clearly shown for
 -_ one Si‘c!e of the triangle in Fig. 53a where none of the points has reached the center. In Fig. 53b the
- midpoints of cach side have reached the center, and we get three curves, each with a cusp, the whole
giving a very characteristic leaf form. In Fig. 53¢ -s_om‘e pbin-ts have passed through the center and somé
; héve not, and each side then becomes a curve with a loop init. The _threé angular points‘_of 't.he‘_t_rflanglc v

. haye reached the cénter in Fig. 53d, and all other pgintsv have passedvbeydnd the center: a tr’efé‘ii-fdr_m
rcsultsIn Fig. 53¢, all the points have gone through the center of the tri'ahgle. The constriction,
- ft_l}ié:efb_fe, for this series of drawings is very simple, although the joining of the points obtained by a
smooth curvcv will present difficulties to some ch_ildren—. Such curve drawing will, however, become
'i'n'c':r;asin_gly important in later work, and it is 2 good exercise for children to underrake it at this stage.-
Artistic coloring of these drawings, that is, shaded coloring, which is related to the movement towards
and beyond the center of the triangle, adds greatly to the interest and pleasure that the children have in
constructing the geometrical forms. This principle of construction may be extended to other geometrical

figures, and modifications may be introduced to produce curves reminiscent of other well-defined leaf

forms.



The next two drawings illustrace the mcramorphoses of a pentagon and of a circle with such 4
modification of the construction introduced. The resulting curves clearly resemble an tvy leaf and a
water-lily leaf. In the case of the pentagon (Fig. 54) rays from points in thz sides are drawn 1o the cenrer
of the figure. (At this stage the pentagon is drawn by measuring the angle 108°. In a later chapter
dealing with the geometry of the pentagon, the construction in a circle js described.) The point 0 is not
moved at all, and the point 10 is moved along its ray all the way to the center while the two points 1 are
moved 1/ 10 of this distance, the two points 2 ate moved 2/ 10 of this distance, and so op. These varying
distances moved by the different points are given by the perpendiculars in the actompanyi ng construction
diagram in which the length of the base line is equal to the semi-perimeter of the pentagon. For the
circle (Fig. 55), the construction for the water-lily leaf is just the same: The base line in the accompanying

construction figure is equal to the length of the semi-circumference of the circle,

Fig. 53a
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Fig. 56
In the last series of drawings illustrating the metamorphoses. of a triangle, a pentagon, and a
e circle, we have arrived at characteristic leaf-form curves, which have been drawn freehand by joining
. S4 points obtained according to definite geometrical construction. Such metamorphoses were originally

developed by Dr. H. von Baravalle to whom reference has already been made in the preface. This
“point-wise” method of drawing a curve is, of course, a very common one and belongs essentially to
analytical or Cartesian geometry—to the drawing of graphs. There is, however, ahothe_'r means of
constructing a curve, which children of this age should certainly practice.This 1s the “line-wise” method

- and is really a kind of molding of the curve from the outside. We have already come across this con-

thie straight lines form the envelopes of the circles. Thcrc now follow examplcs of such line-wise-
: construutcd curves. Mrs. Edith L. Somervell mtroduced line-wise curves, early in thc ‘twentieth century;
n thc tcachmg of quite young children by using “cards punchcd w1th different series of holes through
"which were threaded colored silks or wools { (see Chapfel 1.) The parabola is the easiest and s1mplest-
‘ ;.curve to construct, and Fig. 56 shows the lme—wnsc constructlon “Two straight lines, OA and OB, are

‘drawn at any angle, and equal distances are marked off along these lines and numbered as shown. Then

points 1, 2, 3, and so on, in OA are joined to poinrs 1, 2, 3, and so on, m OB. We see at once how the

curve arises, and it is ev1dcnt that the more points we take along each lmc, the “smoother” the curve will

the same construction using lines OA and OB at right angles and taking many more points along the

lines; here we see a much smoother curve. Mrs. Somervell recommends that the children should only

- struction in Fig. 19 where the weaving of many straight lines molds a number of concentric circles— -

appear. The curve s, of course, really made up of st.alght {ines that envelop the curve. Fig. 57 illustrates
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draw (or stitch) this curve after they have been introduced to the “curve of pursuit.” Here one imagines
a rabbit feeding at O some distance from his burrow at A (Fig. 58). A dog ar B sces the rabbit and gives
chase. The rabbit makes a “beeline” for his burrow while the dog must always be changing his direction
and so runs along the curved path as shown. This curve of pursuit is not a parabola though it somewhat
resembles one; it belongs to a class of curves known as transcendental. In chis illuscration the dog is
traveling at the same speed as the rabbit, and so the rabbit safcly “goes to earth” since the dog rakes a

longer route!

Fig. 57

Fig. 58
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the shore sides of these triangles envelop the curve. I may be

to the logarithmic spiral as the curve of pursuit for each dog.

Another important curve thar may easily be constructed in a linc-wise manner is cthe lo arichmic
Y Y

piral (Fig. 59). Here a series of 30°, 60°, and 90° triangles are placed onc on the ocher as shown, and

noted thac by joining the angular poings

where the triangles come together) by a smooth curve, we obtain a point-wisc logarithmic spiral.
This important spiral is also a curve of pursuit. The problem of three dogs placed at the vertices

of an equilateral triangle, and starting simultancously with equal velocities to chase one another, leads

 Fig. 59

6.



In their later studies, the children will come across both these curves in quite other connections:
the parabola, when they learn about the conic sections—Chapter VIII—and the logarithmic spiral in
connection with the golden ratio—Chapter IV. It is an excellent opportﬁniry when a teacher can refer
to material of such imporrance with which the children have had some experience at an eariier age.

There are endless possibilities for drawing beautiful designs by the line-wise construction of

curves. Figs. 60, 61, 62, and 63 show examples using a triangle, a square, and a hexagon; notice that all

these particular designs involve combinations of parabolic curves.

Fig. 62 ‘ Fig. 63




The examples that nave been given 1n chis chapter have mostly been taken from che writer's

“experience of the teaching of geometry to younger children, say from 12 to 14 years of age. Such a

course would cover about two years work, and during this time the children will gain a sound knowledge

-of the clementary geometrical figures together with their faws and propertics, a considerable amount of

practice in the fundamental constructions ofgcomctry, an introduction to the drawing of curves, as
well as some feeling for the relationship of geometry to form in nature. All this has been given to the
children in an imaginative, pictorial way, that is, in a manner thac belongs to their particular stage of
development. Later on when they treat the subject more intellectually with the Euclidean proofs, they
will already have a firm foundation on which to build, and this different approach will then give them
a knowledge complementary to that which they acquired in these early years.

It should also be emphasized that in using such methods, the teacher has great scope for her
own imagination and inventiveness, and the foregoing must in no way be considered as a complete
syllabus. Different teachers will choose different examples and perhaps stress one aspect of the work
more than another. The essential is that the subject shall be introduced by means of pictures appealing
to the imagination and not by trying to force the intellect prematurely.

It is not the intention of this book to deal exhaustively with every part of a school syllabus in

geometry. In the chapters that follow, examples will be given (1) to show what may be a new approach

to ordinary themes included in most school curricula and (2) to introduce aspects of geometry that are

perhaps unusual in schoolwork but which the author believes are essential to an understanding of form

in nature and of the nature of space itself.
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Chapter 4

The Pentagon and Pentagram,

and the Golden Ratio

In the last chapter, reference was made to the statement of Kepler that the two most important

things to learn about in geometry are the theorem of Pythagoras and the geometry of the pentagram. In

the following study of the pentagon and pentagram, we shall see why Kepler considered these figures of

such importance.
The two figures, of course, belong together: the regular five-sided figure, the pentagon, and its

re-entrant counterpart, the pentagram, o five-pointed star. We have already drawn a pentagon in the

series of metamorphosis drawings (Chapter 3). We will now repeat the drawing and include the pentagram -

(Fig. 64), constructing it by again measuting the angle of 108°. (We shall see later why the angle is

108°.) From very early times, this ﬁve—pomted star has had great significance as a symbol and we shall"

tealize as we study it that it is indeed a true ptcturc of man himself with hlS arms outstretched hlS feet

ﬁrmly planted on the earth, and his head pointing to the heavens It is no mere arbltrary plcture, buta

" real sy'nbol of the human being in his threefold nature. In Greek times, the pentagram was sometimes

called the “triple triangle.” Iambhchus, in his wntmgs about the Pythagorean School of philosophy and

mathematics, tells us that the pentagram was the sign and seal of that school It was considered by the

Greeks as symbohca‘ of health, and probably the star points were denoced by the letters of the word

vyeda—our word hygiene—the dlphthong €A being replaced by “07(see Fig. 64).
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There is the story of one of the pupils of the Pythagorean school of nigalhcma{ics who was on a
journcey; he fell ill and sought shelter ar a wayside inn. In spite of the care of the innkeeper he became
worse, and, realizing chac he was going o dic, he called the host to him, chanked him for his care and

“devotion, and regretred that he had no moncy with which to pay him. He asked the innkeeper to bring
him a board on which he drew a pentagram, telling him o hang it outside the inn. Soon after chis he
died, and the innkeeper hung the board wich the pentagram as his inn sign. Years afterwards, anocher
Pythagorean, travelling cthat way, noticed the sign and asked the innkecper how he came by ic. On
hearing the host's story, this traveler then paid him generously for the hospitality and attention he had
given to the dying man.

The pentagram has always been used as a Christian symbol, for example, the star at the top of

the traditional Christmas tree, while the six-pointed star is the emblem of the Jewish faith. The pentagram
is asingle broken line that returns to its starting point; the hexagram consists of two separated equilateral
triangles, one pointing to the heavens and the other to the earth. In the Middle Ages, the pentagram
54 was often worn as an amulet or charm to ward off evil: The Devil would flee before the pentagram just
as he would at the sign of the Cross. This mystical significance of the figure is referred to by Goethe in
one of the early scenes of Fause Mephistopheles enters Faust’s study in the form of a poodle, which
changes by magic into human form. After a short conversation with Faust, Mephistopheles asks

permission to leave him:

Meph.: Pray let me leave you for the present.

Faust: 1do not see why thou shouldst pray.
Though our acquaintancé be but recent,
Look in upon me day by day.
~ Here is the window, there the entrance,
A chimney I can offer you.

Meph.: Let me cbnfess—thcre is a trifling hindrance
‘ Which bars my course the doorway through
The wizard’s foot upon your threshold.

Faust: The Pentagram! That gives thee pain?
If that thy foot within the mesh hold,
Thou Son of Hell, how didst thou entrance gain?
Say, how was such a spirit cheated?




Meph.: Observe it well! Tha figure’s not completed;
Here, if you look but closely, it remains
A little open at this outer angle.

Faust: A lucky chance, the Devil thus to entangle!
So thou’rt my captive for thy pains?
Nay, by my fay, that is a windfall!

Meph.: The poodle leapt across it all unmindful,
But now things wear another face!
The Devil cannot void the place.

(from Goethe’s Faust, translation by Albert G. Latham)

Another striking reference to the symbolism of the pentagram is to be found in one of the

Arthurian legends:

Gawain was known for a good knight, faithful in five ways and five times in each way.
He was like refined gold, pure from any vileness and radiant with all virtues. Therefore
he bore the pentangle as his emblem, as the truest and gentlest of all the knights. First
he was faultless in bis five wits; and then he never failed in the might of his hands and
the skill of his five fingers. He put ali his trust in the five wounds that Christ bore on the
cross. And whenever he stood in the press of fight hie kept steadfast in his mind, through
all the rumult, that he drew all his might in battle from the five joys that the gracious
Queen of Heaven had of her child. For this reason he had, on the upper half of the
inside of his shield, a picture of the Virgin painted, so that when he looked at it his
courage never failed. And the fifth five that Gawain had were the five virtues: generosity
and love of his fellow men and cleanness, and courtesy that never failed and lastly pity,
that is above all other virtues; these five were deeper in Gawain's heart and more surely

part of him than of any other knight. With these five he was girded and each was joined

with the others. There are five fixed pomts in the pentangle, and no line runs into
another nor yet is sundered from the rest; and there isno place wherever a man begins,

at which he can comé to an end of the ﬁgure Therefore on Gawain’s bright shield the

device was charged splendrdly gold upon gules. This is the pure pentangle as wise men
call it.

(Sir Gawain and the Green Knight by M. R. Ridley)

of a continuous band or ribbon as shown in Fig. 65.

The pentagram or pentangle referred to above would be emblazoned on Sir Gawain’s shield in the form ,

.

The mathematics and geometry of the pentagram now to be described are suitable for children .

of 14 or 15 years of age. We may begin, apparently far away from the subject, by considering different




:- in the class can try to find out: how

§

s of numbers, starting with the simpler scries of the arithmetic and gcnmcrric progressions. The
ren should experience the qualitative difference of these two series: how the arichmetic series (e.g..
4568, 10, 12, 14, etc.) increases (or decreases) in a regular, even manner, while the numbers of a
eometric serics (c.g., 2, 4, 8, 16, 32, 64, 128, etc.) increase (or decrease) by “leaps and bounds™ with

sreater and greater rapidity the furcher we go in the series. We may say thac the first series proceeds in

~a rather dull and sluggish way, while the second one has great activity within it. Here again, reference

" may be made to earlier work, and the children may be reminded of two drawings they did in their first

geometry lessons where the lengths of the lines and the areas of the figures (triangles in the one drawing
and squares in the other) decrease in geometrical progressions (Chap. 3, Figs. 11 and 20). It will also be
possible at this stage to introduce the well-known methods of finding the #th terms of these series and
also the summation of 7 terms. Here the story of little Karl Friedrich Gauss (1777-1855) may be told:
He had a very lazy schoolmaster who one day set his small pupils (Gauss was 6 years old at the time) the
task of adding together all the numbers from 1 to 100, thinking that this would keep them occupied
long enough for him to have a nap! He dozed off at his desk but after a few moments felt a gentle tug

at his coattails. Looking down, he saw a very small boy holding a large slate on which was written just

a few figures and the correct answer to the sum he had set!

1, 2, 3, 98, 99, 100
100, 99, 98, 3, 2, 1

101, 101, 101, 101, 101, 101

10,100 divided by 2 = 5,050

brmg real human interest into the subject as well as dlustratmg mathematical , gemus

The chlldren w1ll greatly ¢iijo

processes mvolved in their formatlon hventually the teacher will write the followmg series on the

o chalkloard:

0,1,1,2,3.5,8, 13,21, 34, 55, 89, 144, 233, etc.

This progression is built up in such a way that each term is the sum of the two preceding terms. It is the

well-known Fibonacci series, named after Leonardo Fibonacci of Pisa, who had a great reputation as a
mathematician during the early vears of the thirteenth century and who introduced the use of Arabic

numerals into Christian Europe.

e,r 1ave been budt up 2 ‘and what aré the various otk ematlcal

‘ V-Such stories of mathematlcal development and dlscovery are important for chlldren to hear, for they L

-"‘a.km ’up more or less difficule number SCI‘lCS, and then others -
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.(0.61803. . ...) and that they approximate more and more closely to this number the further we go in

We now take successive terms of the Fibonacci series, expressing them as ratios and finding

their decimal values:

=0 L N AL/
L/ | 3iss = 061818, ...
Uy = 05 Slgg = 0.61797....
Y3 = 0.66666.... 891144 =  0.61805....
3 = 06 144/)33 = 0.61802....
Slg = 0.625 . 233/357=  0.61803....
U85 = 061538.... 3771610 =  0.61803 .. ¥
13/21 = 0.61904 . ... etc. etc.

We see that the different ratios are alternately greater and less than a certain number

the series. This process may be compared with the v1brat10n ofa pendulum, swinging first to one side -
and then to the other, each swing being less than the one before it and all the time getting nearer and”’
nearer to its mean posmon but never quite “dying down.”

Another series is now built up in the same way as the previous one, and again the successive

terms are expressed as ratios w1th their decimal values: For example: =

1,3,4,7, 11, 18,29, 47, 76, 123, 199, 322, 521, 843,_ etc.

iy = 033333... 761193 . oess....
3, = 075 RETHN - 0.61809. ...
4, = o574z, s = “o.61801.. ..
iy = 0.63636.... 322, = 0.61804....




:ng

e

Hjg = 061111, 521/g43 = 0.61803....

18,9 = 0.628G8.... 843/ 364 = 061803....
Vg7 = 061702, .. 1364/,,0, = 0.61803.. ..
4156 = 0.61842.... etc. etc.

Again the same thing happens: Out of quite a differenc set of ratios a certain number gradually appears,
and this number is the same as for the previous series, that is, 0.61803 .. .. So we may start with any
two numbers, and from them build up a Fibonacci series, and the ratios thus obtained will always more
and more closely approximate this same strange number.

An exact mathematical expression for this number to which the Fibonacci series ratios

approximate is:

V5-1

—2— = 0.6180339885. . . .(to 10 decimal places)

This number has an endless number of decimal places without any recurring. Thuat is, 1t is an irrational

exactly the same decimal digits.

- A5-1

X2 = 0.6180339885 . ...

2

2 1 - , ,

- = = 1.6180339885 . .. _
J5-1  0.6180339885 ... o .

" number because /5 is irrational—and-it has very special and remarkable properties. For example, if

we calculate its reciprocal, that is, divide it into unity, we obtain a whole number (unity) followed by. -

-r
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The proof of this remarkable property is as follows:

2 .2 Aser 205en Usel Ll
VS=1 0 s-1 7S 4 4 2 2

From the foregoing, it is clear thar this is a very special, even unique number, and we will therefore now
call it the.golden number and denote it by the letter G. Another way of expressing G is by the following

continued fraction:

’

G=,,l

+

1+

1+1

1 + etc.

If we stop this continued fraction at different points and simplify it, we always get a ratio whose
denominator and numerator are consecutive terms of the Fibonacci series. Thus in thc above case, the

fraction simplifies to 13. Again, another expression for G is the following continued square root:

GfJ1+J1_+\_/1+\/1%«/; +§tc.

This expression is, of course, more difficult to mmphfy mvolvmg the use of. logarlthms (It should be
pointed out that the letter G is used cither for the number 0.61803 . . . or its reciprocal 1.61803 . .

may be convenient. In the above two expressions, the value is 1 61803 ..

As well as forming the golden number, the numbers of the Fibonacci series have many remarkable
properties among themselves. Dr. J. Ginsburg of Yeshiva University, U.S.A., has pointed out a number

of such relationships among which are the following;:

—



iprocal of 89, the twelfth term of the Fibonacci scries, itself gives in its decimal equivalent the.

l/gg = 0.011235955056179 ... ...

~— ] 0.0112358
13
" ow 21
ng 3455
89
144
233
377
610
987
1597
0.01 1235955056179 .......

Again, if any three successive terms of the Flbonacu series are taken, the sum of the cubes of the

ose
N two greatest ones less the cube of the smallest one always gives a Fibonacci number.
the
) P+ (Fhq P - (Fy )3 = Fibonacci number
For example, 53+ 33-23 - 125+27-8 = 144
o, 8+53-33= 5_.12,+_1}2'_5'_ ~27= 610
b v Thc value of G (thls time, 0 61803 . ) is also gi‘venv by the positive b'r'obt“”ovf: the qua ratic
be AR ° SR SR
o 'uatlon G2+G—l St - L g
] G2-f‘G+1 =1 :
le G =ji___ Vi1+4
2 '
er _ |
=0.61803. ..
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Another remarkabic property of the golden number is shown by raising the number to the sccond,

third, fourth (and so on) powers:

G = 1.618 (correct to 3 decimal places)
~? 2.619 f-srrect to 3 decimal places)
L 4.236 (correct to 3 decimal places)
G4 = 6.854 (correct to 3 decimal places)
etc. etc.

G2 = G +1 = 1 +G
G3 = G2+ G = 1 + 2G
G¢ =  G3+GZ =  1+3G
Thus, G> = G4+ G3 = 3 + 5G
and G6 = G + G4 = 5 + 8G
etc. - etc. €tc.

In the third column of the above table, the numbers of the Fibonacci series appear again. We also see

that we have here arrived at a Fibonacci series, which is at the same time a geoimetrical progression with -

the common ratio G:
l_ G, GZ’ G3, G4, GS ........ Gn Gn+1 Gn+2‘etc - ) .; ,‘ .
Thus, GP + Gl - G1¥2

o, 1+G =G

ie,. G?—G—1=0

e
~ &

= 1. 61803 . . . . (considering positive values only)

It must be remembered that the common ratio G of the above series is itself a ratio amved at ever more

and more closely by taking successive terms of the Fibonacci series. This series, which can be obtained




ond,

O see

with

more

uned

unity which the Greeks always considered as a factor) add

i §

y adding two successive terms to get the next one or by multiplying each term’by a comumon ratio, is

uite unique and again emphasizes the remarkable propertics of the golden number.

&=mwe - In his well-known book, The Curves of Life (Constable & Co. Led., 1914), Sir Theodore Cook

deals in considerable detail with the golden number and its propertics using a somewhat different
notation from the above. Whereas here we have used the letter G as the symbol for the golden number

or its-reciprocal as is convenient, Cook uses the symbol ® =1/G . The equation thus becomes:

1 + : =1
(1)2 (1)—

M 2
€ P -P -1=0

which is the above equation where we have used the symbol G.

So far we have considered certain number relationships and have discovered a number that has
very remarkable and unique properties, a very special number—truly a golden number. It should be
mentioned here how such a study of the quality of number can give children the greatest interest in
mathematics. They realize that there are wonderful secrets hidden within numbers, and they see how
often the simplest arithmetical processes reveal these secrets. Mathematics is more than a science of
calculation for utilitarian purposes, which in ordinary scl.oolwork it so much tends to become. Childici
can and should experience the quality of numbers, and they can then gain some understanding of the

Greek conception of number. Aristotle, referring to the Pythagorean School of mathematics, said:

They thought they found in numbers, more than in fire, earth, or water, many
recemblances to things which are and become; thus such and such an attribute of numbers
is justice, another is soui and mind, another is opportunity and so on; and again they
saw in numbers the attributes and ratios of the musical scales. Since, then, all other
things scemed in their whole nature to be assimilated to numbers, while numbers scemed
to be the first things in the whole of nature, they supposed the elements of numbers to
be the elements of all things, and the whole heaven to be a musical scale and a number.

A good example of this qualitative treatment of number is givenroy the Greek conception of a

- “perfect” >_r'1ur_nlb_e‘r or again of a “friendly” number. A perfect number is one whose factors (including

together to make the number. For example,

6and 28 are pcrfect numbers:

6¥i+2+3 and 28:1{'2+4+7+14

Pythagoras was once asked.by one of his pupils concerning the nature of friendship; he replied
that friends are to one another as the two numbers 220 and 284. To understand this strange answer, one
only has to see that the sum of the factors o'f 220 (including unity) is 284 and the sum of the factors of
284 is 220.
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Sumoffar!torsonZO: 1 +244+5+10411 +20+22+44+55+110=284

Sum of factorsof 284 = 1 + 2+ 4+ 71 + 142 = 220
There are, of course, other perfect numbers and pairs of friendly numbers.

To return then to our subject after this digression, we shall now see that what we have deale with
here is really the mathematics of the pentagram, and we will therefore consider the geometry of this
figure. The pentagram may be drawn by two methods, first by construction in a circle and then by
measurement of sides and angles. The method of construction for drawing a pentagram in a circle is
carried out in the following steps (see Fig. 66): Draw a circle, center O, and place in it a diameter XOY
and a radius OA at right angles. Bisect OY, giving point P. With center P and radius PA, draw an arc
cutting the diameter in Q. Then distance AQ (stepped off with compasses) will go exactly five times
round the circle, giving points A, B, C, D, E. If now these points are joined in their order, a pentagon

is obtained, and if alternate points are joined, we get a pentagram.

Fig. 66
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The second micthod of drawing (whc ﬁgurc by measurement involves knowing the angle of a

égular pentagon, namely 108° (sce Fig. 64). This angle may be calculaced by applying the Euclid
“proposition, which says that all the angles of any rectilinear figure, together with four right angles, are
equal to twice as many right angles as the figure has sides. (The proof of this proposition may well be

'_gi;/cn to the children.) Thus if 8 is the required angle of a regular pentagon, then

-
58 + 4 right angles = 10 right angles
50 = 6 right angles

= 540°

Therefore, 6= 108°

~

In all the foregoing work on the mathematics of the pentagon-pentagram figure, the children
will, of course, carry out the calculations involved. This will give them valuable practice in elementary
arithmetic, for example, in the finding of the decimal values of the Fibonacci series ratios. Now when
they have learned to construct the figure accurately, they will be able to draw many designs based on it.
One such design is the pentagram band or ribbon (Fig. 65). Three further examples are shown in Figs.
67, 68, and 69, in which a decagon is first cunstructed in a circle. The coloring of such designs can
‘bring out different characteristics. For example, in Fig. 68 there are very many pentagrams to be found.

Fig. 67 is, of course, a continuous decagram band.

4’ Fig. 67
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Now it & evident that all the sides of the pentagram are of equal length and thai the figure s

mmetrical with respect to a line drawn from an angular poinc through the center. There being five
ich lines, the pentagram has a fivefold symmetry. Each of its sides is parallel to a side of the enclosing
pentagon, and thus there are five such pairs of parallel lines giving risc to five equal trapeziums. ABCE
“ is one such trapezium (Fig. 70). There are also a number of rhombus figures, for example ABPE (Fig.
' 70). Various geometrical forms can thus be found within the pentagon-pentagram figure: other trapeziums
(BEQT, BRQT, SRDC), other rhombuses (BSQT), quadrilaterals (ASVR), and many triangles, all of
" which are isosceles. A very important and interesting property is that the figure reproduces itself, for we
can go on drawing pentagrams one within the other, each one being smaller than the previous one and
also being alternately erect and inverted.

We may now consider the angles of the pentagon-pentagram. Take the angles grouped round
point P: the smallest angle is TPX = angle XPY = angle YPQ. Let us call this angle 0. Then angle
TPQ = 3. Now, angle XPQ = 20 = angle QPD. So we have:

. 30 + 20 = angle TPQ + angle QPD =2 rxght angles
That is, 5Q = 2 right angles = 180°

Thierefore, o = 36°

So the angles grouped round point P are asfollox"vs:

angle TPX = 36°

angle TPY = 72°

angle TPQ = 108° o

angleTPD . = 180° - | R
reflex angle TPC -~ = 288° V

- first few terms of the Fibonacci series.

As we have seen, the mangles to be. found in the: ﬁgure are all 1sosceles but of two kinds, acute

property in that its base anOIes (72°) are double the vertxcal angle (36°); also the vertical angle (36°) of

-the tall form bccomcs the base angle of the flat fortn whose vertical angle is obtuse (108 ).

- and we see that these angles are in the proportion of the numbers 1, 2,3, 5, 8, whici: we recognize as the -

Bt angled and obtuse angled, a “tall” form and a “flat” form (ulg 71). The tall form has a special angle
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Fig. 70

Fig. 71
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Lastly we have to consider the lengths of the lines in the pentagon-pencagram figure, and the
following scries gives the lengths, increasing from the smallest to the greatest to be found in Fig. 70. (Of
course, a longer scrics of lengths could have been obtained if further pentagrams had been drawn, but

the figure as it stands—three pentagons and two pentagrams—gives enough for our purpose.)

Ist  Length of side of smallest pentagon - say, VZ
g 2nd  Length of star-point smallest pentagram - say, SV
3rd  Length of side of middle-sized pentagon - say, SR

4th  Length of side of middle-sized pentagram - say, SQ

5th Length of side of largest pentagon - say, AB

6th  Length of side of large pentagram - say, AC

- Consider the 3rd length, SR:
We see that SR = SZ =SV + VZ
i.e., the 3rd length = 2nd length + 1st length.

Consider the 4th length, SQ:
~ 1 - W see that SQ = VQ + SV = SR + SV
i.c., the 4th length = 3rd length + 2nd length

a

Consider the 5th length, AB:
We see that AB = BR = BS + SR = aQ+ SK
Le., the 5th length-= 4chl length +3rd length

Consider the 6th length, AC: :
i.e., the 5th length = 5th length + 4th length.

e Thus we see that this series is agam a Flbonaca series, for each length is the sum of the two. preceding

" done before, we find that the value of these’ ratios nc longer approximates closer and closer to the
~golden number the further we go in the series, but that e every single ratio gives the golden number
exactly! This may be shown by measuring the lengths as accurately as p0351ble, and the value of each
ratio will then be, say 1.62 { \\.orrect to two decimal places) The fact that consecutive lengths belong to

triangles that are similar also proves ‘that the ratios are all equal.

ones. But i itisa very specxal Fibonacci senes, for if we express successive pairs of terms as ratios as was -



There are many different ways in which a line may be divided in geometry to give cerain

proportions, and among them there is the well-known proportion of the golden ratio:

Fig. 72

The line PQ (Fig. 72) is divided in golden ratio at the point G if the following conditionis fulfilled:
The ratio of the smaller part (minor) to the larger part (major) equals the ratio of the larger part (major)

to the whole line.

i.e., Minor part _ Major part
Major gart ~Whole line

gl lw]
Dlo

G
e

Such a condition is fulfilled many times in the pentagon-pentagram figure. For example, take two-
similar triangles, next to one another in size, such 2s ACD and ATQ. Because they are similar, their

corresponding sides are proportional:

ie., T AL
C% AC
But, CD=AT=AB
Thus we have AS = AB
‘ . AB  AC

and these two equal rations are formed frorﬁ corisécuti\'re lengths AS, AB, AC, which we have shown

belong to a Fibonacci series.

It now only remains to show that the golden number is the numerical expression of the golden
ratio: If we consider the whole lirie to be divided in golden ratio as of unit length and the large part of
length x, then the small part is of length (1 — x). Then we have, according to the d.eﬁmtlon of this

proportion, the condition that
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-x _ X

X 1
1.C 1—-)( = Xz
or XXex—-1=0

which is the same equation we considered earlier, and the positive root is

X=22_ - 061803...

Minor part _ Major part = the polden number
Major iEart ~ Whole line 8 ‘

To sum up, we see that every pair of consecutive lengths in the pentagon-pentagram figure

expressed as a ratio gives us the golden number. This ratio occurs again and again in the figure. Indeed

we may say that the pentagram is built upon the golden ratio; the whole figure is “saturated” with it. It
can also be shown that certain areas in the figure stand to one another in golden ratio, for example, the

' ‘areas of pairs of consecutive triangles, the triangles bemg arranged in order of magmtude (See F1g 7C).

- '-._ Thus, - aeauwiSWV - triSVR - wriRSW - tiRSO -
area tri SVR i RSW i RSQ a1 ASR

0 wiASR _ wiSBA _ wiATQ _ tiABE _ 4. golden number
o f: : tri SBA i ATQ tri ABE i ACD _
. . E o - For cxajmple‘, consider the last pair of ratios.
. Then area tri ATQ = 1/2 base x height = 1/2 TQ x height
Then area t:ri ABE = 1/2AB xheight
Then area tri ACD | = 1/2 AC x height

Now the heights of these three triangles onto the bases TQ, AB, CD are equal. Let us call these equal
heighes h.
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Thénwehave 12TQx h = 1/2ARx h ‘
1/12AB x h 112AC x h

e, JTQ = AB

AB AC

but TQ, AB, and CD are consecutive lengths in the pentagon-pentagram figure.

Therefore, T = AB = the golden number
ol &= hes
Therefore, area tri ATQ = tri ABE = the golden number

area tri ABE tri ACD

It is very interesting to notice the different names that have been given to this geometrical
proportion. Pacioli (c. 1450~1510) called it Proportio divina; Kepler (1571-1630) referred to it as
Sectio divina (divine proportion or ratio), and Leonardo da Vinci (1452-1519) gave it the name of
Sectio aurea (golden ratio). Today if this proportion is looked up in any school geometry, it will be
found under the name of “medial section” or extreme and mean ratio. Such a name, which has no real

meaning, gives us no feeling for the importance and the quality of this proportion, which earlier

Fig. 73
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- If AB is che given line (Fig. 73), then acone end, say B, draw a perpendicular BC making BC = 1/2 AB.

Join AC. Then with center C and radius CB, draw an arc cutting AC in D. With cenier A and radius

soear AD, draw an arc cucting AB in G. Then the point G divides line AB in golden ratio.

Proof of the above construction:

Suppose AB is 2 units of length. Then by construction, BC = 1 unit and CD = I unit.
By Pythagoras, AC =+/5

Therefore: AD=+/5 -1

Therefore by construction: ~ AG =+/5 -1

Therefore: GB=2- (\5-1)=3-+5

Now for line AB to be divided in golden ratio at G the condition is that
Minor part GB Major part AG
Major part AG Whole line AB

3—\/5 3—\[5 \/§+1 2\/_5——2 '\5—1 Major part AG
- X = - =
-1 =17 J5+1 4 2 2

Minor part GB =

Therefore, AB is divided in golden ratio at G.

Using this construction, we may now draw a golden rectangle, that is, a rectangle whose sides
are in golden ;ati'o (Fig. 74). It is characteristic of this figure that if we successively cut off squares on the
smaller side, we get a series of similar—that is, always “golden”—rectangles shrinking in “goiden series”
along one of the diagonals. Any slight inacéuracy of proportion is quickly revealed by the increasing

“obiongness” of the diminishing squares.

' Fig. 74
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Fig. 75

Fig. 76




rawing of Fig. 75 shows a comparison of angles. The four triangles are drawn inside a golden
angle. The lowest isosceles triangle is given by the diagonals of the goidcn rectangle. It is a slightly
tened equilateral triangle—base angles just under 60° and vertical angle just over 60°. The second
iangle is equilateral—angles G0°. The third is given by the semi-diagonals of a square—base angles
3°26', vertical angle 53°8". The fourth is the pentagram triangle—Dbase angles 72°, vertical angle 36°.
e may be noted that the approximation of the lowest triangle to an equilateral triangle gives a convenient
| method for a rough-and-ready construction of a golden rectangle and therefore of golden ratio.

Fig. 76 is a diagram of “golden compasses,” which may be used for measuring golden ratios.
Thcy may be made of wood or metal. The two long equal legs OA and OB, pivoted at O, are divided
in golden ratio at G| and G, The two shorter legs, G;G and G,G, joined and pivoted at G, are also
pivoted at Gy and Gy respectively, and are equal in length to the minor and major lengths of the
golden ratio division of the two longer legs. To whatever distance the compasses are stretched, AGB is
always a straight line (the pivot at G should be as near the end of each leg as p0531blc) and the point G
then divides the distance AB in golden ratio.

It is interesting to note that a similar instrument, a pair of double-ended dividers (hinged like a
pair of scissors) was discovered during the excavations at Pompeii and was evidently used in these early
times for setting out the golden ratio to any scale.

From the very earliest historical times we find many references to this important proportion
and to its mathematical expression, the number G. We have already pointed out that the pentagram
was the symbol of the Pythagorean School of mathematics, and it may well be that Pythagoras learned
about this figure and its proportions from the Egyptian oriests with whom he studied. That this pro-
portion was well known to the Egyptians and that they considered it of the first importance is clear
- from the fact that it is expressed quite fundamentaﬂy in the measurements of the Grear Pyramid at
_ G17a The inclination of each of the triangular faces to the square base is given by J. H. Cole of the

- Survcy Dcpartment of the Egyptian Government (1925) a5 51°52'. He also gives the side of the square

| . base 25756 ft (actually thls is the average of the measurement of the four sxdbs, which differ by only a
e

c-51°52

- le, Half,the side of the base _ 378 = 0.618 = G to three décimal places.
Height of face triangle 612 :

(Cos 51°52" = 0.6180) - .

inches) and the vertical height as 481 ft. From these two measurements, we may €asily calculate (by

'hcorcm of Pythagoras ) that the helght of each of theface trlanglvs is 612 fr. Now the cosine of the -
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Thus with an astonishing degree of accuracy in such a massive structure, the golden ratio is embodicd.

Y . . . . o ¢
It is also interesting to notice that the cotangent of the angle 51752

=  Half the side of the base - 378 = 0.786 = J/tT
Vertical height of pyramid 481

"(cot 51°52' = 0.7860)

Many Greek temples were built in golden ratio proportion, not only in their overall measurements
but in fine details as well. The overall breadth and height are generally major and minor. The main door
is the major to the height of the pillars. In the total height of the building, the height of the'pillars is the
major and the upper part (entablature and pediment) the minor. The entablature and pediment are

minor and major to one another. The width of triglyph and metope are often in-golden ratio. In many

‘cases, the distance between the two middle pillars is the major and that between the other pillars the

minor. Also the distance between pillars and their thickness is sometimes in golden ratio. The door is a
golden rectangle. These are a few examples among many that could be given. Never perhaps have the
beauty and grace of proportion of a Greek temple been surpassed, and we see how these qualities are
just those expréssed by the golden ratio. Of course this proportion is embodied in many other styles of
architecture both before and after Greek times and in different epochs of civilization. It is indeed
universal and for all time.? - ‘

In his book Der Goldene Schnist, Dr. Goeringer speaks of how in handicrafts the true craftsman
is striving to make something aesthetically beautiful as well as pracrical and uSeful, and he points out
that the proportions of such creations often embody the goldelrcl ratio. He chooses two extreme examples
of craftsmanship, the American ax and the violin, and in the following drawings (Figs. 77 and 78), he
indicates the proportions of these two forms, illustrating how intimately they are bound up with the
golden ratio, although they ate used for such widely differing purposes. The violin is such a perfect

example of the craftsman’s art and it embodies the golden ratio so fundamentahy that we will consider

the geometry of its form in some detail. Recently the duthor was given a drawing showing the geometrical

constructions used today in the famous Mittenwald School of violin making in Germany. Fig. 79
shows most of the essentials of this drawing r_cproduced'to.ha!f—séale; (The body of a violin is about 14
inches long.) It shows the proportions of the widths of different parts of the body in relation to the
lengtl.. There are two fundamental points that determine these proportions. These are the geometrical
center C, the midpoint of the line of symmetry AB, and the positior. of the bridge D. This point D is
found as follows: BB is per pcndlcular to AB and half its length {i.e., BB, = BC). Join BjA, and along

this line step off B;C, = BC. Then D is the foot of the perpendicular from C; on to AB. The position - -

of point R, through which passes the line of greatest width, is determined by dividing CB in golden




i b
ratio by the construction as shown; the position of point P is athcn found by stepping off CP = CR. The
position of the feet of the bridge is given i)y the circle with center D and radius DC. The second circle
is twice the radius of the first one and determines the position of point Q, through which passes the line
of least widch at the “waist” of the violin. Point X is fixed by dividing AD in golden ratio, and then
point Y, by dividing BX in golden ratio. The actual widths of the body at these different fundamental
points are found as follows: half the narrowest width at Q = QY; the greatest width at R is twice the
narrowest width at Q; the width at P = AQ; the narrowest widch at Q is also the golden ratio major of
the width at P; half the width ac X and the length AX form two sides of a golden rectangle; that is, they
are in golden ratio; similarly for half the width at Y and the length BY. We see from these detailed

considerations how the essential form of the violin is built up according to the golden ratio proportion.

Fig. 77
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The author has in his possession a smafl, dark blue/in which the golden ratio is to be found in all its

proportions. Fig. 80 shows a full-scale plan and elevation of this vase. The diameter of the base is one-

w-fourth of che height. The position of the greatest diameter divides the height in golden ratio (point O).

The average diameter of the mouth is the minor of the greatest width of the vase, The diameter of the
narrowest part of the neck is slightly less than the major of the average diameter of the mouth. On the
side of the vase, beautifully executed in gold on the blue glaze, is a wild duck flying up from some reeds.

The eye of the duck is exactly at the point that divides the overall height of the vase in golden ratio.”

.

-~

N

Y,
%

Another example of the vcrafts:man;s art is. the making of furniture, and here again the golden

ratio is often to be found. We reproduce by kind permission of the Ministry of Works, London {Crown

copyright reserved), two photographs (Plates 1 2nd 2) of the famous Coronation Chair in Westminster

Abbey, as well as scale drawings of the back and side elevations and a plan of the seat of the chait (Figs.

81, 82, and 83). The label descﬁbin-g the chair itself states that it was “made by Walter, the King’s ]

Painter, at the command of Edward I in 1300-1301 to contain the Stone of Scone brought by the King

from Scotland. In this chair every Sovereign has been crowned sirce King Edward IL” The following
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golden ratio proportions are to be found in the chair—some of them with considerable accuracy, others
very near. In each case, the ratio is expressed as major : minor (= 1.618). (The proportions to three

significant figures are calculated from the elevation and plan drawings.)

Back elevation (Fig. 81)
PB: AB = 1.63 TV:RT = 1.53 (thus CD =TV,
RV:CD=1.62 UB:TU =1.59 UB = SU,
CD : RT = 1.55 SU: QS =1.56 and TU = QS)

Note that CD is the distance between the midpoints of the vertical pillars; also Q marks the position of

the center of the circle in the triangular form at the top of the chair. The points that other letters

indicate are clearly shown.
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Side elevation
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TV :EF = 1.61

7" Again EF is the distance between the midpoints of the front and back pillars.

- Plan of seat (Fig. 81)

The distances are taken from the midpoints of the pillars.

In a recent book on sound reproduction entitled High Fidelity by G. A. Briggs, the following
passage appears: “Mr. J. Moir, in alecture on Room Acoustics to the British Sound Recording Association
in February 1956, said that the ideal dimensions for a listening room were: Length, 21 fr, Width,

13Y2 fr. and Height, 8Y2 ft.” ¢ It is interesting to notice that
21:13%2 = 1.56and 13 V2 : 8 V2 = 1.59.

Thus the proportions of this room, length : width and width : height are those of thc golden ratio,
correct to one decimal place (1.6). Here we see that this propomon belongs to what i is aesthetlcally
pleasmg to the ear as well as to the eye! Indeed, Dr. Goermger in his book, Der Goldene Schnirs, speaks
of the yolden ratio in connection with the wavelengths of tones of bedutiful chords, so the ideal
proportions of a listening room are perhaps not surprising. »

When we look at a painting by a great artist, we are irﬁmediately aware of two things—thﬂe color

and the form. We can experience at once the balance and harmony of the picrure mherent in these two

expressmns of the artist’s skill and i inspiration, and we shall often find that the greatest works of art of al

ages reveal the principle of the golden ratio in their form. One of. the most striking examples is The Last’

Supperb/ Leonarde da Vinci-—perhaps the greatest ofall pamtmgs (Platc 3). In the form of this picture |

‘ Apostlcs are in golden ratio with the central ﬁgurc of Christ; the three heads in each group, esp°cxally

~the faces, are arranged in this same proportion, and the general level of the heads divides the whole

height of the painting in golden ratio. Other golden ratio proportions are 2 be found as follows: the

front edge of the table, the top of the windows and the edge of the ceiling; the front edge of the table,

thc.edgc of the tablecloth, and the lower édgc of the picture; the position of each small window in
relation to the width of the whole painting; the width of each of the small windows and the width of the

middle one; the perspective widths of the dark tapestries on the side walls.

Cowe find the golden ratio repearedly expressed. The “centers of gravnty ' of each of the.four groups of
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Another striking example is Giotto's famous painting of St. Francis preaching to the birds (Plate

4). Here the position of St. Francis’ head divides both the height and the width of the painting in

golden ratio.
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In his book The Curves of Life, to which we have alrcady referred, Sir Theodore Cook shows the

fﬁ;‘idgmcn(al significance of the proportion of the golden ratio | in nature, especially in relation <o
1. spital formations, for example, in shells, leaf formations and climbing plants, animal horns, and so on.
““Then he discusses through several chapters the relation of this same proportion to works of art in
rious spheres, for example, architecture, sculprure, and painting. In all this he goes into grear derail

and gives many and varied examples. Then towards the end of the book he savs:

_ the fundamental element in that joy which the artist’s creation gives us may well be
the manifestation of those profound laws of nature which, in some cases, hc¢ may have
deeply studied, and, in many more, he may have so instinctively appreciated that they
are the unconscious motives of his style and sense of taste. If “®” in some way describes
the principle of growth, which is one revelation of the spirit of nature, would not the
artist most in touch with nature tend to employ that proportion in his work even
though he were not conscious of its existence? : |

The beauty of a shell or a flower makes an irresistible appeal to us which needs no
argument. . . . The processes of growth explained by the ® spiral, and the successive
‘ proportions they reveal, have therefore an intimate connection wich the source of our
v , pleasure in the beauty of a natural object. ' ' |

A great painting also makes an irresistible appeal to us which needs no argumensg and I
may fairly compare the masterpieces of art with the shells or flowers that have survived,
" because bad pictures, though they do not “die,” are certainly forgotten, and need not be
brought into my argument at all. . . . i have already shown that the same inferesting

“variations”from any such simple formula as @ are to be found in the best art just as
they are to be found in the surviving organism. Ir will clearly be of scme significance,
therefore, if I can also show that there is as grca_t a measure of agfccmcni with @ in the
one case as in the other. If so, it will not imply that the artist liad any preconceived idea -
of using the ® proportions in his (_:pﬁipos:'itio'ri; any inore 5‘thaﬁ thie Nautilas had any
coriscious plan of developing a certain spiral in its shell. Butitwill suggest the possibility

A - that'there ;exi‘sté a very real li.n’klfb;,etv'véef‘t_li;thos_'c proccsscsof artistic creation which are

'O vagueély called “instinctive” and those principles of nat-ufal growth which are admittedly

. fundamental. [ venture, in: fact, to offer @ as an undérlﬁﬁgreason for what we call

Beauty both in a-natural object and in a masterpiece of art.,

The ® spiral to which Sir Thedd_bfé Cook refers is @ 1ogarithmic spiral whose radii vectors are in
golden ratio proportion (Fige 84). He also calls it a Pheidias spiral (hence the symbol @—phi—for the
golden ratio) because the sculpture of Phciciiaé expresses the @’ proportion in great detail. A straight
line OX rotates in a plane about a fixed point O, and at the same time a point P in OX moves along OX.

Then the point P describes a curve called a spiral. The form of the spiral depends on the law conmecting
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the displacement of the point P along OX with the angular displacement of OX. The length of OP at
any instant is called the radius vector (t), and the angle this makes with the initial position OX is called
the vectorial angle ( ® ) at chat instant. If the successive values of @ are in arithmetical progression (ie.,
increase in equal instants by an equal angular measurement) and the corresponding values of ®arein
geometrical progression (i.e., increase regularly by a constant ratio), then the curve traced by the point
P is called a logarithmic spiral. It is also known as the equiangular spiral because of the property that che
angle @, which the tangent at any point makes with the radius vector, at that point is a constant. Now
in the logarithmic spiral drawn here, the constant ratio by which the radius vector t increases in each

complete spiral turn is the gol\ien ratio (1.61803 . . .), that s,
OP, : OP; = OP3: OP; = OP4: OP3 = OP5 : OPy4 = OPg: OP5 = OP;: OP¢ = 1.61803 . ..

As well as in the forms of many shells, spirals are frequently to be found elsewhere in the forms
nature creates. A noteworthy example is that of the arrangement of leaves on the stem of a plant. The
points on the stem at which the leaves bud forth are called nodes, and in many plants and trees, these
nodes lie on a spiral curve winding round the stem. We may perhaps find, as in a cherry branch, that
five leaves complete a cycle and the sixth leaf lies vertically over the first from which we started counting.
Furthermore, in ascending (or descending) from the first leaf-to the sixth, we have traced out two
complete spiral turns. Such an arrangement is expressed by the ratio 2 : 5, that is, five leaves in a cycle
consisting of .two spiral turns. The botanist calls this the phyllotaxis ratio. (Phyllotaxis’ means leaf
arrangement.) Other plants have different phyllbtaxis ratios, for example, 2: 3, 2:5,5:8. 8 : 13,

13:21, and so on. Now i will be noted that the numbers that form these ratios are just the numbers of

the Fibonacci series. Under normal conditiohs of growth many plants give phyllotaxis ratios whose

numbers belong almost mvarxably to, the Flbonaeq series. “Cut of 140 plants counted by Weisse, six

only were anomalous, the ecror thus bemg only four percent.” Another example of phyllotaxis is in the

fir cone; in some specics there are five rows of “scales” spiraling up the cone in one direction and three
rows winding less steeply in the other drrectlon Or, there may be eight rows and five rows, An American
botanist named Beal exammed 505 ‘cones of the Norwegran spruce and found that 92 percent had
spxrals of fiveand elght rows; that 1s, onlv elght percent did not give numbers belongmg to the Fibonacci
series. '

In flowers we find the same phenomenon In a sunflower, the tows of lorets are generally 34
and 55, while i ina very iarge- head. they are 89 and 144. Sir Theodore Cock sums this up as follows:
“The fact that plants express their leaf arrangement in terms of Fibonacci numbers, so frequerscly that
it passes for the normal case, is the proof that they are aiming at the utilization of the Fibonacci angle
which will give maximum superposition and maximum exposure to their assimilating members.” ¢

The “Fibonacci angle” here referred to is the angle 137° 30" 28" and is the inverse angle of

J5-1
2

of 360°, that is, (360° — 360° x 0.61803...).
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: dcah with by Dr. /\ H. Church in his Interpretation of /’/7yllomx1: I’bcnomena 1920. However, it should

Be'¢iid that other investigators do not wholly agree with his theories and ideas (e.g., D'Arcy Wentworth

_ Thompson in his book On Growth and Form).”

From whart we have said here, it will be evident that the golden ratio is a fundamental proportion

inherent in the forms of nature and in the creations of the great artists and craftsmen of all ages. Now

~ we may ask the question: Why does the artist so often use just this proportion, and does she use it

consciously or unconsciously? We know, for example, that Leonardo da Vinci was fully aware of the
golden ratio, although it is inconceivable that before he started painting his masterpiece, he carried out
geometrical constructions on the wall of the Refectory in Milan, dividing his canvas in golden ratio
proportions. And yet we find this proportion in the picture in great detaii and also with considerable
accuracy. On the other hand, it may well be that Walter, the King’s painter, had never heard of the
golden ratio, and yet again this proportion is to be found in the famous chair he made. Is there not
perhaps some deeper reason for the fact that this proportion is to be found so frequently in artistic
creation?

The answer to this question has already been hinted at in the reference we have made to the
sculpture of Pheidias. Born in Athens about 500 B.C., he is universally regarded as one of the greatest

of Greek sculptors. Many examples of Greek statues of the age of Pheidias have been examined and

shown to embody the golden ratio in great detail though, of course, with divergences and variations. -

Now the portrayal of the ideal human form, whether male or female, by the great: Greek sculptors has "~

never been surpassed. Is not then the golden ratio fundamental to an understanding of the proportions -

of the ideal human form? Sir Theodore Cook'® considers a well-proportioned man 68 inches in helght,

which is F4 if we take 10 inches as the unit of measurement [04 = (1.618 . )4 =6.854 ... Then':- a

. from. feet to navel is 42 inches, or 83 ; from navel to crown of head is 26 mchcs or 02; and from brcasts"

to navel is 10 mchcs, which is the unit of measurement, or 810,

We will now show such propomons ; somewhat dlﬁerently with reference t the female human :

i form and w1ll use the termmology of ma)or and’ mmor of 2 lengtH dwlded in golden ratio:

- Major o | b‘ S Mmor

Foot to waist (5% or last lumbar vertebra)  Whist to crown of head
_ Whist to-chin (or 7¢ {last] vertebra) " Chin to ctown of head (length of head)
Crown to point of kneeling Point of kneeling to foot
Crown of head to point where middle B Point where middle finger comes, with arms at
finger comes, with arms at side _ side, to foot
Knéeling point to waist Waist to chin
Chin to “sitting bone” Sitting bone to kaeeling point
* Sitting bone to linc under breasts Line under breasts to chin

-
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These are some of the chief vertical golden ratio proportions. With regard to horizontal proportions,
the distance from fingertip to fingertip with arms outstretched is divided in golden ratio ac either of the
shoulder bones or acromions. The breadth of the shoulders (acromion to acromion) is the major to the
breadth of the waist as the minor. The horizontal span of the arms equals the height of the body.
What is true of the whole body is also true of the extremities. For example, the ideal hand

expresses the same fundamental proportion:

Major Minor
Tip of middle finger to center of palm Center of palm to wrist
Wrist to knuckle Knuckle to first finger joint
Knuckle to first finger joint First finger joint to second finger joint
- First finger joint to second finger joint Second finger joint to fingertip

110

These proportions apply to each finger. The thumb where the two phalanges are nearly equal is an
exception.

If the arm is held horizontal, then from acromion to fingertip is divided in golden ratio at the
elbow joint. When the arm is hanging by the side, then the division is not at the elbow but just above,
at the thinnest part of the upper arm where the muscles begin.

If we consider the whole height of the head from chin to crown, then the golden ratio division
is at that poinr in the forehead known as the glabella, behind which lie the pituitary body and the pineal
gland. It may be noted here that the vanishing point of all the lines of perspective in Leonardo’s picture
of The Last Supj;er (Plate 3) is just this point in the forehead of the central figure of Chist. Taking the
height of the face only, then the golden ratio division is at the root of the nose (major beiow, minor
above) or at-the point of the nose (major above, minor below) In the latter propomon the major is also
equal to the breadth of the face.

‘What we have sald here will be sufficient indication that the ideal human form is “built up”

according to the golden ratio proportion even down to the greatest detail. In reality the ideal form is

never fully attained in any mdrvrdual—-—-1t is a prototype towards which every single human form more

‘or less approxrmates bo God created man in Hrs own 1mage, in the image of God created He him;

maJe and female created He them.” _

- Here then, surcl), is the explanauon of why the golden ratio is to be found so universally in the
forms of artistic creation! The artist or craftsman projects owrwardly into his work what belongs to him
inwardly in his own form and nature. And W\,,’Who admire his work, find it aesthetically right and

pleasing for just the same reason, although we may have no conscious knowledge of the golden ratio

proporuon

We began this chapter by considering the geometry of the pentagram. The pentagram is indeed -

a true symbol of the human form, for as we have seen, it is buiit up on the golden ratio.




Chapter 5

The Four Rules of Arithmetic

" This is a period of work that can well be carried out by children of 14 or 15 years old and introduces

them to important and interesting curves, some of which they will be studying in greater detail when
they are older. It also involves an understanding of the concept of point locus, and, in carrying out the

drawings, much good practice is gained in the free-hand drawing of curves as the path of a moving

The series of drawings that follows illustrates the four rules of arithmetic treated geometrically.

point. Furthermore, it will be seen how the curves become metamorphosed and what their limits are. It -

should again be pointed out that careful and artistic coloring adds greatly to the appearance of the

drawitgs, and the children then have niore enioyment in their work. This in no way detracts from the

necessity of accurate construction and fine curve drawing. = -

“Addition

A certain convement length (in the drawmgs reproduced herc, mches) is chosen as the “constant

by “ stcppmg off” these focal distances from the twa foci with a compass.. This process is rcpcated unti!

- sum’ and remains constant for this set of drawmgs Two-points, called foc1 are taken quite close together'
“(say 2 inches apart)’ (Fxg 85a) and re remain fixed for the pamcular drawmg Now a point is found such

‘that the sum of its distances from the two fixed foc1 is equal to the constant sum (4 inches). This s done

a whole series of points is obtained, and these are then |omed by a smooth curve. Thus the sum of the

focal distances of any point on this curve is a constant (4 inches):
a + b =c + d = constant (4 inches).

This closed curve, which is a geometrical picture of addition, is an ellipse. Now what happens when ihe

foci are moved further apart, the constant sum (4 inches) remaining the same? As may be seen from the
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drawings (Figs. 85b and 85¢), the cllipse becomes thinner, and it becomes clear that there are definite

limits. When the foci are coincident, we shall have a circle (radius 2 inches). Then as they are scparated,

we get ellipses that become ever thinner and thinner until when the foci arc a definite distance apart (in
the case we are considering, this distance is 4 inches), the ellipse has degencrated into a segment of a
straight line of length 4 inches. So in this process of movement, we have passed from a circle, through
a family of ellipses, to a straight line. It should be noticed that the length of each ellipse—the major

axis—is always the same, and equal to the constant sum (4 inches).

Fig. 85a




Fig. 85¢

Subtraction

Again we choose any convenient length as the “constant difference” (e.g., 2 inches) and take

- two focal points. Now it is a question of finding all points in the planc of the papes, the difference of
whose distances from the two foci is always the same, that is, equal to the constant difference (2 inches).
The construction is carried out as before, but th_s foci must be a certain minimum distance apart bcfdre
any figure can be constructed. This minimum distance is equal to the constant difference (here 2
inches). The curve obtamed when this distance is greater than 2 inches is the hyperbola (Figs. 86a, b, ¢)
whose two branches open out more and more as the foci are moved further apart. Thus a family of
hyperboias is obtamed and the difference of tl‘e focal distanices of any point on the curves is a constant

(2 inches):

a-b=c-d-= conétant ¢2 inches).

X

As may be seen from the metamorphosxs of the form of the hyperbola in the three drawings, the two.

branches or | wmgs * of the curve will, in one instance, close up into two straight line segments going
. outwards from the foci. This limiting case will occur when the foci are the distance apart equal to the
constant dlfference (2 inches). The o;her 11m1t is when the foci are infinitely far away in either direction;

then the wings of the hyperbola will have oDcncd out to two parallel straight lines. Hence during this

‘movement of the foci, we have passed through a metamorphosis of a hyperbola from the two outer

segments of a straight line (later in this book we shall understand that this is really one continuous
segment joining the foci through infinity), through the ever-widening wings of the hyperbolic curve, to
two parallel straight lines at right angles to the directicn of the former line. It should also be noticed
 that the two poles of the hyperbola (i.e., the two points where the curve cuts the line joining the foci)

do not-move and that their distance apart is equal to the constant difference (2 inches).
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In the case of the ellipse, the functions of the two foci are the same, since for the process of
addition the commutative law is valid, thatis,a + b = b + a. Thus the geometrical piCturc.of addition
is a closed curve. But since for the process of subtraction this law does not hold (i.e., a — b docs not
equal b — a), the functions of the two foci of the hyperbola are different. In the construction of the
hyperbola, one has to reverse the process of subtraction for one branch of the curve. Thus the physical
reality lies in one branch or wing, and the other one is, as it were, the image or mirror picture. This is
also always the case when a hyperbolic curve is obtained graphically as the expression of a physical law
of nature. For example, the graphical expression of Boyle’s Law,

PV = constant,

where P is pressure of gas and V its volume, the temperature remaining constant, is one branch of a
rectangular hyperbola. The other branch that mathematically must be there would be expressing the
relation between negative pressure and negative volume. To what do such conceptions apply? Clearly

not to a physical gas, which cannot have a negative volume nor exert a negative pressure!




Multiplication

In the geometrical pictures of the process of multiplication, we seca wonderful metamorphosis
taking place. The length chosen this time represents the “constant product,” say 4 inches, in the drawings
shown in Fig. 87, and again two focal points are taken quite close together. By a similar constructional
method as before, points are found, the product of whose distances from the two foci is always the
same, that is, equal to the constant product (4 inches). These points are joined by a smooth curve. Then

the product of the focal distances of any point on this curve is a constant (4 inches):
axb=cxd = constant (4 inches).

When the foci are quite close together (say 2 inches apart in Fig. 87a), an oval curve is obtained.

This is not an ellipse. The dotted-line curve is an cllipse having the same major and minor axes as the

oval. On moving the foci apart, but of course keeping the constant product the same, this oval curve
becomes flattened until in one position a “flat oval” is obtained (Fig. 87b). Continuing the movement
further, the flat sides of the oval become concave (Fig. 87¢) until, when the foci are a certain distance
apart, the figure has changed into a lemniscate (Fig. 87d). This metamorphosis occurs when the distance
between the foci is equal to twice the square root of the constant product (constant product = 4,
4 = 2, 2inches + 2 inches = 4 inches). If the foci are now further separated by only the smallest

amount, two distinct egg-shapéd ovals are obtained (Fig. 87¢), which become smaller, more rounded,

- and further apart as the distance between the foci is increased (Fig. 87f). This series of curves is named

atter the French astronomer jean Dominique Cassint (1625~1712), and they are known as the curves -

of Cassini. He proposed to substitute these oval curves for Kepler’s ellipses as the paths of the planets.

By rhis geometrical process, we thus arrive at two dlstmct oval curves that have arisen from a

, Single oval, and we have traced the various stages by which this transformation comes about. Although

we see these two separate ovals arising from the smgle oval, they are mathématically still one curve.

A mere glance at these six drawings will remind one at unce of photographs or diagrams in

tcxtbooks of blology showing the process of cell division—or rather of cell multiplication. These

gcometrxcal figures are a picture of the natural phcnomenon of the multiplication of one cellular organism .

into two such organisms. The comparison is very strlkmg and again shows us how geometry, treated in

an imaginative and living way, may be brought into relation with organic processes of nature, with the

living forms of nature that are constantly undergoing metamorphos:s as they grow and develop. This

relationship may perhaps be expressed by saying that underlying all form and change of form in nature

" there are geometrical laws ac work. This is the essential theme of two well-known books, The Curves of *

Life by Sir Theodore A. Cook, already referred to in the last chapter, and Growth and Form by D’Arcy
W. Thompson.
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Fig. 87a




(b)

Figs. 87 b, ¢,d
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Figs. 87 ¢, f




In these six drawings, the product (4 inches) has been kept constant thrOughi)u( while the foci

have been moved furcher and further apart. Now we may combine them all into onc picture if we keep
.the foci fixed and vary the product. Then each curve is a picture of the process of multiplication, the
pfodua becoming less and less as we pass from the large oval, through the flat-sided oval to the lemnis-
cate, and on to the separated egg-shaped ovals (Fig. 88). From this figure we may obtain many interesting
geomerical relationships, especially with regard to the flat-sided oval and the lemniscate. These are
shown by the constructional circle and dotted lines. The flat sides of the oval are tangents to the circle
passing through the two foci. A square is drawn in this circle with its diagonals; the vertices of the two
equilateral triangles drawn on cither side of the vertical diagonal give the two endpoints of the flat oval.
Thus four important points of the flat oval are determined. Now the circle cuts two sides of each
equilateral triangle, and these four points are the “highest” and “lowest” points of the lemniscate curve;
the tangents to the circle drawn parallel to the sides of the inscribed square meet exactly on the endpoints
of the lemniscate. So for the lemniscate, six fundamental points are determined including the “crossing
point.” It should be further noted that the curve crosses itself at right angles at this point.

The curves of Fig. 88 are not drawn full scale, as are those of Figs. 86 and 87, but are reproduced
from a drawing in which the foci were 6 inches apart and the constant products for each curve going
from outside to inside were 36, 25, 18 (flat oval), 15, 12, 10, 9 (lemniscate), 8, 6, and 4 inches. It
should also be pointed out that to obtain the necessary points for drawing the curves, fractional and
decimal factors of the constant product are necessary, and the endpoints are determined by the solving
of a quadratic equation. To illustrate this. we will again consider Fig. 87¢ in which the foci are 4.1

inches apart. Here,

axb=09x45-= 405andcxd 3.1 x 1.3 = 4.03.
Both these values of the constant product are very close to 4. To find the positions of the er\dpomts of

the curve, that is, the distances x and X, the followmg calculation is necessary:

I
N

x (4.1 -%)

n
=)

e, 2 —4lx 4

Solving the equation, . _ Cox - 16 (approximately)
. X, (4.1 + x l) = 4
Le., xl2 + 4.1}(1 -4 =0

Solving this equation, ) X = 0.82 (approximately).

- . 119




'

20

P

Fig. 88

Fig. 89
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In Fig. 89, the same set of curves is rcprocfuccd with their orrhogonnl. trujectorics (curved lines
that everywhere cut the curves at right angles), which converge on onc or other of the two foci. The full
lines (the orthogonal trajectories) give a picture analogous to that which is obrained when one traces
the “lines of force” of two like magnetic poles placed close together. This may be done by placing a piece
of paper over two bar magnets with their north (or south) poles about 3 inches apart and sprinkling
iron filings over the paper. On tapping the paper, the filings will arrange themselves in definite lines,
that is, along the lines of force. Or if we consider two equal and similar electrical charges placed at the
foci, then the orthogonal trajectories represent the lines of force due to these two charges, and the
dotted curves represent the lines of equal potential. So we see here in the orthogonal trajectories a
picture of two opposing forces clashing and repelling one another. Or again in the pointed egg-shapes
of the ovals, we see that they have only just separated themselves from the unity of the “mother” figure
and are straining towards one another; when they are pulled further apart théy influence one another
less and hence are merely rounded.
~ In his book Growth and Form, D’Arcy Thompson says that modern scientific invest.gations
seem to lead to the general conclusion “that differences of electric potential play their part in the
nhenomena of cell division” (in the chapter, “On the Internal Form and Structure of the Cell”). He
reproduces a drawing of the final stage in the first segmentation of the egg of Cerebratulus and side-by-

side a diagram of a field of force with two similar poles; the similarity is striking.

Division

Just the same construction is used as for the pictures of the other processes. Two focal pointsare

taken and a “constant quotient” (2 inches in Flg 90a) is chosen, and then pomts are found, the quotient
of whose distances from the two foci is always 2. Jommg these pomts we obtain a pair of c1rcles

g = 2

3y = ¢

become larger (Fig. 90b). Again, as in the case of subtractlon the commutative law is not valid
(i.e., 3/}, does not equal b/a), and so the functions of the two foci are exchanged in constructing the
second circle. It may be noted that two Apollonian circles of equal radius do not have the same relation
to each other as have the two branches of the hyperbola (the curve of constant difference), which, of

course, isa smgle curve.

" When the foci are moved. further apart, the form of the curve does not change, the cxrcles mmplv-
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If we kebp the foci fixed but change the constant quotient, then we obrain a famiiy of pairs of
circles as in Fig. 91. As the constant quoticnt gets larger, the circles become smaller and farcher apart,
and their centers approach the foci closer and closer. The pairs of circles in the figure are the pictures of
the constant quotients (going from outside to inside) 12, 2, 3, 4,5, and 6.

These circles, which are pictures of the process of division, are known as the circles of Apollonius.
Apollonius of Perga (circa 225 B.C.) was one of the great mathematicians of Greece who wrote a
systematic treatise on the conic sections, and it was he who gave these curves their names: ellipse,
parabola, and hyperbola.

We have seen that the circles become smaller and smaller the greater the constant quotient, and
their centers approach more and more closely to the foci. As the quotient approaches infinity, the circles
tend to converge on the foci. The other limit for the drawing is when the quotient is unity; then the
circles become infinitely big and touch one another. That s, this limit is the straight line that bisects at
right angles the line joining the foci and the line at infinity of the plane.“ It is interesting to notice that
in passing from a constant quotient of 12 to a constant quotient of 1—only a difference of 1/)—the
geomefrical picture passes from quite small circles to infinitely big ones.

If we join the highest and lowest points of the Apollonian circles by a smooth curve, we get a
rectangular hyperbola (dotted line in Fig. 91), which is, as we have seen, a picture of the process of
subtraction. Here we see a pictorial connection between the processes of division (circles of Apollonius)
and of subtraction (hyperbola), and this we should expect since these two processes in arithmetic are
closely related. We may say that division is a quick and short way of doing repeated subtraction. For

example, suppose we ask the question: How many people can receive a gift of $5 out of a total sum of

~xrr .

L IS T SR A

A~ 11 1 1 Iad N 1. - -...:.A.'..
PLUS We will work tnis out Iurst by subtraciion and thei Dy Qivisioiil

By subtraction: . - -

$20

—~ 5 lst subtraction
15 '

—. 5 2ndsubtraction
10

— _5  3rd subtraction

— _5 4th subtraction
0 ,

* We see that we have to carry out the process of subtraction four times to use up all the $20. Thus four

people can receive the gift of $5.

By.division:
$20
/ =4
$5




A similar relationship between multiplication and addition (multiplication is a quick and short
method of carrying out repeated addition) is shown pictorially by the circle drawn in the curves of
Cassini picture (Fig. 88). The circumference of this circle passes through the highest and lowest points
of the curves of Cassini within the flac-sided oval. The circle is a limiting case of an cllipse and is
therefore a curve of addition; it is also related to the right angle (the angle in a semicircle is a right angle)
corresponding to the hyperbola in Fig. 91, which is a rectangular hype.rbola. It is also of interest to note
that if we take the lemniscate as being typical of the “product” curves of Cassini, we have in its center
part, where the two branches cut one another at right angles, the sign for multiplication (x). The sign
for division (+) can be scen in the “quotient” circles of Apollonius if the drawing of Fig. 91 is placed
with the central line horizontal.

When the drawing of Fig. 91 is colored—especially if the smallest pair of circles is colored
black—then one has the impression of a pair of eyes looking with a squint. When we observe an object
acutely, we, as it were, “grip” the object with our eyes. The axes of our eyes converge onto the object and
“hold it” in vision. Thus, when we look at an object, especially when it is close to us, the pupils of the
eyes are inclined inwards, that is, the eyes have a slight squint. Moreover when we observe anything
acutely and with concentration, we may say that we are within a process of calculation. We even speak
of the “calculating look or glance” of a human being. Now which arithmetical process is ¢anstantly used
by the eyes in observing the objects of the outer world? It is surely the process of division, for the eyes
divide the one object into two pictures, one on each retina, which then become again tnited into a
single image by an elementary act of thought, by the activity of the human ego. The genius of language

reveals to us the same relationship: the Latin dividere, to divide, is connected with wvidere, to see; in

~ English the word vision is contained in the word division.

" It may be noted that the orthogonal trajectories of the Apollonian circles resemble the curves of
the lines of force of two unlike magnetic poles or electric charges. This resemblance becomes closer the

further the poles are apart.-

In giving such drawings to children, one is not giving them somethmg arbitrary, but something

with a real, deep content. The conunections with outer nature and with man himself that the teacher -+

indicates are not fanciful but fundamental realities. So the chxldrcn will gain their knowledge of geometry

. on 2 sound and sure basis, and it will become increasingly living and vital for them when, in their later
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school years, they come to have a more intellectual understanding as the complement of what they have
been experiencing imaginatively. By such a method of teachiing, the conceptlon that “God is eternally

geometrizing” becomes more and more of a reality.




Chapter 6

The Five Regular Solids

- The five regular solids, as their name implies, are solid figures having identical regular faces,
equal edges, and equal angles. They are sometimes known as “Platonic bodies” because of their significance
in the molecular theory and cosmogony propounded by Plato in his Zimaeus. These five polyhedra are
show drawn in perspective in Fig. 92. Their names are (a) cube, (b) octahedron (8 faces), (c) tetrahedron
(4 faces), (d) icosahedron (20 faces), and (¢) dodecahedron (12 faces). They were first studied in the

school of Pythagoras, who may have brought his knowledge of the first three from Egypt. The

Pythagoreans related the tetrahedron to the element of fire, the octahedron to air, the icosahedron to

water, the cube to earth, and the dodecahcdron to the universe. They also knev- thar 2l five polyhedra,

can be inscribed in a sphere, which they con51derecl the most perfect of all solid bodies. The study of

these figures was continued in the school of Plato (c. 380 B.C.). The dodecanedron undoubtedly hada

mystical or religious significance; a number of bronze models of ancient Celtic ongm are still to be seen

in various museums, and a stone dode(‘ahedron found in northern Italy belongs toa prehlstonc penod

In the Middle Ages, astrologers and astrofiomers occupied themselves with these regular solids. Johannes..

Kepler made a considerable study of them, and in 1596, he believed that he had found a relationship

between them and the number and distances of the planets He set forth his discovery in his A{}sterzum

C o.rmogmp/azcum (The Mystery of the Umverse) he began by constructing a series of regula1 polygons of

such size that a circle could be inscribed in each and at the same time should be the c1rcnmscnbed circle

the distances of successive planets, but in this he was disappointed. This, however, led him to apply the
same method to the regular polyhedra; he calculated the radii of the pairs of spheres that can be inscribed
and circumscribed to the five regular solids placed one within the other, the sun being at the center of

this system. The result satisfied him that he had discovered a fundamental secret of the universe: The

 to the next member of the series. He hoped that the radii of successive circles might be proportional to .

radii of the inscribed and circumscribed spheres of an octahedron were fairly closely proportional to the



greatest distance of Mercury and the least distance of Venus, respectively, from the sun. The radii of the
inscribed and circumscribed spheres of an icosahedron were found to correspond to the greatest distance
of Venus and the least distance of the Earth. The dodecahedron, tetrahedron, and cube could similarly
be placed between the successive orbits of the Earth and the three outer planets, Mars, Jupiter, and
Saturn. Kepler realized that the relationship was not perfect, but at that time, he attributed the
discrepancies to inaccurate observations. His book, Mysterium Cosmographicum, wWas the means of
introducing him to the Danish astronomer Tycho Brahe, and from that moment Kepler's further
researches, based on Tycho’s observations, which he trusted completely, led him away from his ingenious

theory and towards his epoch-making discovery of the elliptical orbits of planetary motion.
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Fig. 92
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Fig. 93

Oue of the chief values to be gained in studying the five regular solids with children of, say, 15

years of age, is in their making models of these figures. Such an activity calls forth a high degree of
accuracy and quite skillful manipulation. It was the great German artist Albrecht Diirer (1471-1528)

who first showed how to construct the regular solids by drawing the surface polygons all on one piece



of paper or thin cardboard and then folding along the connected edges. These “nets,” as they are now
called, are shown in Fig. 93, and they form, when folded and the edges are stuck together (flanges not

shown), the corresponding solids of Fig. 92.

It may quite easily be proved that there cannot be more than five regular polyhedra:

At least three plane angles are required to form a solid angle, and the sum of such plane angles
“must be less than 360°, otherwise the plane angles would all lie in the same plane and there
would be no solid angle. It follows that each angle of the faces forming a regular polyhedron
must be less than 120°. That is, the faces can only be equilateral triangles, squares, or pentagons;
for the angle of a regular hexagon is 120°, and any regular polygon of more than six sides has an
angle greater than 120°, Let Q represent the number of degrees in a face-angle. When the faces
are equilateral triangles, Q = 60°. Then (2) 3Q= 180°, (#1) 4Q = 240°, (i) 5Q = 300°, (6Q =
360°). Thus three, four, ot five equilateral triangles, and not more than five, can be used to form
a solid angle in: a regular polyhedron. When the faces are squares, Q = 90°. Then (i») 3Q = 270°
{(4Q = 360°). Thus three squares, and only three, can be used to form a solid angle in a regular
polyhedron. When the faces are pentagons, Q = 108°. Then (») 3Q = 324° (4Q = 432°). Thus

three regular pentagons, and only three, can be used to form a solid angle in a regular polyhedron.

Therefore there can only be five regular polyhedra.

| The nets shown in Fig. 93 are, of course, an illustration of the above proof. For we see in Fig
93¢, b, d, three, four, and five equilateral triangles, respectively; in Fig. 93a, three squares; and in Fig.
93e, three regular pentagons around an angular point, that is, around a point that will become an
émgular point of the solid figure. ' o |

The driwings of Fig. 94 are plane views of the five Platonic solids inscribed in circles of the.

same radius. In these views, all the angﬁlar_points, all the edges, and all the faces of each solid can be
seen, assuming the figures are made of glass. Other positions would give plane views in which. points,
edges, and surfaces would be obscured, for example, a square being the plane view of a cube. It should
be noted that there are two plane views of the tetrahedron (Figure 94c), which show all its points, edges,
and faces, while there is only one such view of each of the other solids. Table 6-1 gives the numbers of

angular points, edges, and faces for each of the five solids.




Table 6-1

Name of Polyhedron| Number of | Number of Edges Number of Faces

Angular Points |
‘Tetrahedron 4 G (3 per angle) 4 equilateral triangles (3 per angle)
Octahedron 6 12 (4 perangle) | 8 equilateral triangles (4 per angle)
Cube 8 12 (3 perangle) | 6 squares (3 per angle)
Icosahedron 12 30 (5 per angle) | 20 equilateral triangle (5 per angle)
Dodecahedron 20 30 (3 perangle) |12 regular pentagons (3 per angle)

p+f=ec+2

This formula applies only to the five Platonic solids.

Euler discovered a formula relating the numbers of angular points (p), edges (¢), and faces (f):
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A very important structural relationship is to be found among the solids themseives. The cube and the
octahedron are intimatcly related to one another in that the one may be transformed into the other: If
the eight corners of a cube are truncated symmetrically, cight equilateral triangular faces appear untif,
by further cutting, the octahedron arises. If the six cerners of an octahedron are truncated symmetricallv.
six square faces appear until by further cutting the cube arises. The cube and the octahedron are said ta
be “dual” figures because the number and configuration of the faces of the one is equal to the number
and configuration of the corners of the other and vice versa. By such a reciprocal transformation, the
icosahedron and dodecahedron are seen to be dual figures, while the tetrahedron is self-dual. That is, it
becomes transformed into itseif. Fig. 95 shows an octahedron inscribed in a cube and illustrates the
dual nature of these two figures.’A sphere is also shown inscribed in the cube and therefore circumscribed
to the octahedron. Thus, the six planes of the cube are six tangent planes of the sphere, and the points
of contact of these planes with the sphere f:m the angular points ot corners of the inscribed octahedron.
This is a fine exampic of how in regular spatial forms, point cerresponds to plane and plane to point.
These two forms are in every respect polar opposites with regard to point and plane. Thus each corner
of the cube is in polar correspondence with a plane of the octahedron, and each corner of the octahedron

is in polar correspondence with a plane of the cube with reference to the sphere.

Fig95

There are other structural relationships that arise between certain pairs of the solids. For example,
a tetrahedrdn is contained by a cube, the angular points of the tetrahedron being four of the eight
angular points of the cube, and its edges being diagonals of the six faces of the cube (Fig. 96). The other
four corners of the cube and the other six diagonals of its faces give a second tetrahedron. Or again, the
midpoints of the six sides of a tetrahedron are the angular points of an octahedron (Fig. 97). A cube’

may be circumscribed round an icosahedron, all the 12 angular points of the latter lying on the faces of




the cube. If all the edges of a dodecahedron are produced, their paints of intersection are the §2 angular
points of an icosahedron. And if all the edges of an icosahedron are produced, their points of intersection

are the 20 angular points of a dodecahedron.

Fig. 96

.Fz'g 97




Fig. 98

Fig. 99
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Fig. 98 is the orthogonal projection of all five Platonic bodies in one figure. (Paﬁs and clevations
are orthogonal projections—the projecting lines are at right angles to the planc of projection). The full
line figure—the largest—is the dodecahedron. Within this is the cube (the broken line square) and the
tetrahedron (broken line square with diagonals). Within the cube are the octahedron and the icosahedron.
(The octahedron is drawn with “chain” lines; the horizontal chain line coincides in part with the horizontal
edge of the dodecahedron. The icosahedron is drawn with dotted lines; the horizontal edge coincides
with that of the dodecahedron and the vertical edges coincide with parts of the edges of the cube.) It

should be noted for purposes of construction that the dihedral angle ' of a dodecahedron is 116° 34’

and that the outside edge of the dodecahedron projection is contained in a square. This arises from the

fact that 12 of the angular points (out of 20) of the dodecahedron lie on the surfaces of a cube, 2 on
each of the 6 faces. ‘

- Fig. 99 is an orthogonal projection showing the reciprocal transformation of an icosahedron
into a dodecahedron by producing the edges as referred to above. The edges of the small icosahedron
(shown in solid line) are produced to give the angular points of a dodecahedron (shown in broken line),
and the edges of this figure are produced to give rise to a large icosahedron (shown in solid line except
where edges correspond with those of the dodecahedron; the producing of the edges is shown by chain
line). Again for purposes of construction, the dihedral angle of an icosahedron is 138° 1', and the
outside edge of the icosahedron projection is contained in a square. This arises from the fact that the 12
angular points of an icosahedron all lie on the surface of a cube, 2 on each of the 6 faces.

Reference to Tables 6-2 and 6-3 shows that in all the numerical values of length of edge, surface
area, and volume of both the icosahedron and the dodecahedron, the golden number appears. Also,

interesting proportions are to be found between the different figures. For example, from Table 6-2,

“where the calculations are made assuming a circumscribing sphere of unit radius, we see that -

g | Edge of cube:

'Edge of dodecahedron =6

radius, we find that

Edge of icosahedron  _ G . - Edge of octahedron _ 5
Edge of dodecahedron ' ' Edge of icosahedron

~ while the edge of the tetrahedron is double that of the cube, and the surface areas of the cctahedron and

tetrahedron are equal. -
v All four other régular solids may be inscribed in a cube. Fig. 100 is an orthogonal projection of
an icosahedron and a dodecahedron inscribed in a cube in such a manner that the 12 angular points

and 6 of the edges of the dodccahiedron lie on the surface of the cube. We then find geometrically that

while from Table 6-3 where the sphere to which the edges of the soli&s’ are tangents is coﬂSidefed_ of unit |



Edge of icosahedron = G
Edge of dodecahedron

which we have also found by calculation (see Table 6-3). The remaining 8 angular points of the
dodecahedron are coincident with the 8 angular points of a smaller cube whose edge is equal to the edge
of the icosahedron. The sides of the 2 cubes are in golden ratio. (The orthogonal projection of che
icosahedron is shown in chain line, the dodecahedron in solid line, and the large and small cubes and
construction lines in broken line.) It will be noticed that the figure contains a number of golden rectangles
(see Chapter 4). '

The fact that there are only five regular solids, thar they are related ainong themselves in such an
astonishing variety of ways, and that their mathematical proportions, including the golden ratio, are so
significant leads us to realize that they are fundamental to an understanding of space. As forras in
nature, they are readily to be found, although some of them only in microscopic organisms. The first
three solids occur in the crystalline structure of a number of common minerals: copper antimony
sulfide (tetrahedrite) and zinc sulfide (zinc blend) in tetrahedra; lead sulfide (galena), rock salt, and
fluorite or fluorspar in cubes (ﬂudrspar also occurs in octahedra); and magnetic oxide of iron (magnetite)
in octahedra. The icosahedron and dodecahedron never occur in the mineral kingdom because they
have a fivefold axis of symmetry, and only two-, three-, four-, and sixfold axes of symmetry are possible
in crys'tall.ography. This is a fundamental law concerned with the whole theory of the partitioning of
space. In the organic world, the cube is found, at least in outline, in the skeleton of the hexaotinellid
sponges; the tetrahedron, octahcdron, iép._sahédron,;aﬁd dodecahedron in the various forins of radiolarian.
These minute unicellular marine organisms-form the bed of the deep oceans; their skeletons are mostly
of silica. Haeckel, in his Monograph of i tbé'_C/yalle}zger Rudiolaria (1 887), estimated the number of known
forms at 4,314 species, included in 739 gcnera._Fig. 101 shows the skeletons of various radiolarians,
after Haeckel: (a) Circoporus octabedrus, (b) Circbgonia icosahedra, (c) Circorrhegma dodecabedra, (d)
Circospathis novena (I?’Arcy Thompson; On vGro‘wi,’:v aid Forim). It may be noted that the faces, wlﬁch
are not necessarily planar, are formed of a2 minute hexagonal network of silica, :

Four more solid figures are, téchnically speaking, regular. They differ from the five platonic
solids in that they have re—entr’ah; angles. The small and great stellated dodecahedra were discovered by

- Kepler (1571-1630) and the great icosahedron and the great dodecahedron by the French mathematician
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Louis Poinsot (1777-1859). They are very beautiful figures but their construction from nets is more
difficult (see Cundy and Rollett, Mathematical Models). The plan views of the two Kepler solids are
shown in Fig. 102 (the small stellated dodecahedron) and Fig. 103 (the great stellated dodecahedron).
We see how these orthogonal projections are related to the pentagram and the decagon star, and as we

should expect, the golden ratio appears again. Thus,

OB _OA _g. (both figures)

‘OC OB




Fig: 100
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Table 6-2
Radius of Length Surface Volume
Circum- of Area
scribed Edge
Sphere ‘
Cub ! 2 8 S
upe \/3 3\/3—
(= 1.155)
‘ 4
Octahedron 1 NG 4+3 3
(= 1.414)
Tetrahed 1 i i 8
letrahedron 3 \/?: 0 ﬁ
(=1.633)
| 4 40 ( 3) =
' 2+4/10+2
Icosahedron 1 104245 545 - : ;— \/g
(= 1.1051)§ - , N
2 _ 2043 4WGZ1
VG +1 TG +1 3
2 2
Dodecahedron 1 .
5-1 . 2+/5 (/S +1
L : \/—5_(\/5—1) ,/10_,_2\/_5_ i(\/—\“*)
V3 , 33
(=0.714) .
5 .
< =ﬂ—§,ﬁ“g 1 4G5
GV3 G B




Table 6-3

j; 1 Radius Length Surface Volume
b of Sphere of Area
_ to Which Edge
= - Edges Are
? Tangent
| Cube 1 J2 12 22
] (= 1.414) :
' 82
Octahedron 1 2 83 —\-3/-——
e , 8
A Tetrahedron 1 2-2 8/3 3
Icosahedron N J5-1 1043 (34/5) }_(%75_'_12
R 1236 20 (\3) 45
- o G2 3G
b ‘Dodecahedron | 1 3-45 6J1025-11Y5) | = 2(345-5)
| | . 125V6 %I _ 45
P G3 G3
. - '\' ) . = 52
Note: G = _\Lgﬂ and L_ \/g ~1 (G'is the golden number.)
2 G 2




Chapter 7

The Conic Sections

The study of the important curves of the conic sections—ellipse, parabola, and hyperbola—is
undertaken in most schools today only with pupils in the higher classes. A knowledge of these curves is
required for advanced level examinations, and then they are usually treated only from an analytical
point of view. An older boy or girl will know the equations of the curves and some of their elementary
analytical properties but will have little or no.realization of their real nature and essence, namely that
they are fundamentally one and the same curve in three different metamorphoses and that they may all
be considered as curves of addition." Treated in a pictorial and imaginative way, the conic section
curves can be studied by children of 15 or 16 years, and they will then gain a firm basis of knowledge

and understanding for the later more ab;tracf and intellectual approach. They will also realize—which

they will never do from the purely analytical aﬁpecr—that these curves are fundamental to an under-

standing of form in the universe, Earth, and man. Here again, geometry becomes a real cultural subject
and not merely a subject that they must learn in ord«*r to pass their examinations.

As the name implies, a conic section is the intersection of a plane with 2 cone. The great

'mathematlcxans of the Golden Age of Greek mathematics were the first to study in dctall the curves of

the conic sections, and this work seems to have orlgmally issued from Plato’s Academy with i its inscription,

“Let none unversed in geometry enrer.’ * Menaechmus (c. 375 -325 B.C. ), an associate of Plato, acquired

a great reputation as a teacher of geometry and was appointed one of the tutors of Alexander the Grea,

- who once asked him to make his proofs shorter. Menaechmus replied: “Though in the country there

are private and even royal roads, yet in geometry there is only one road for all.” He discussed the conic

sections, which for long afterwards were known as the ¢ ‘triads of Menaechmus.”

During the next hundred yzars, great progress was made in the study of these curves by a

number of_ Greek mathematicians, including Euclid and Archimedes, although the writings of these
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two are lost. The crowning work in this subject was carried out by Apollonius of Perga (c. 260 B.C.-
200 B.C.), known as the Great Geometer, who was the author of eight books on conics, the first four of
which have come down to us in Greek and the next three in Arabic, the last one being lost. (We have
already referred to Apollonius in Chapter 5.) Greek mathemarics culminated in the work of Apollonius,
and we may say thart the Greeks studicd these curves on their own account becausc they recognized that
they were fundamencal to an understanding of form everywhere.

For the next eighteen centuries, little progress was made in further knowledge of conics, and
indeed they seem to have been almost forgotten until the work of the astronomer Johann Kepler (1571~
1630) revived interest in them. Kepler placed the Sun in a world focus, with the planets revolving
round it in elliptical orbits. Up to this time, the treatment of the conic sections had been entirely
descriptive and synthetic, but with Descartes (1596-1650), a new treatment became possible through
his algebraization of geometry—what we today call analytic or coordinate geometry—and it is this
method that is chiefly used today in the study of these curves. However, conicmporary with Descartes
were two other great French mathematicians, Gerard Desargues (1593-1662) and Blaise Pascal (1623~
1662), who introduced = new method of investigating the subject now known as projective geometry.
This has made steady progress during the past four centuries and during the twentieth and twenty-first
centuries has increasingly come to be recognized as a geometry of the first importance. The following
chapter of this book is devoted to the teaching of projective geometry, which involves a further
consider_atioﬁ of the conic section curves beyond the scope of the present chapter. |

We will ﬁow consider these curves—ellipse, parabola, and hyperbola—fioin « descriptive,
ﬁictorial.point of viév.v. The children will of course be familiar with the form of a cone, but they must
now realize that the geometrical conception involves a “double cone” as they know it. The following
drawing (Fig. 104) is an elevation view of such a cone. The dotted lines indicate the cutting planes, and
against these lines is written the name of the curve formed by the plane cutting the cone. It is a good
exercise in imagination to‘picturc the form:of the curve obtained as the cutting plane rotates through a

right angle. It comes as somewhat of 2 surprise that the cutting of a cone in a certain direction gives the

- same cutve (an ellipse) asdoes the cutting plane of 2 cylinder.
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It is clear from this dra’wing‘that_ during the rotation of the cutting plane thro;igh a right angle
(the plane passing through a point P on the axis), there is only one circle (cutting plane at right angles
to the axis), only one parabola (cutting plane parallel to the slant edge of the cone), whereas there are

many ellipses and hyperbolas.




!
Two Straight Lines Family of l-lsyperbo::s
(slant sides of the cone) | I
Asymptotes I '

Parabola
(one only)

Family of Ellipses

Circle
(one only)

— wnf w— - =

Axis of Cone e
Fig 104

~ Althou gh it takes rather a long time and involves somewhat complicated drawings, the making..

of models of cones (or rather half-cones) cut by a plane in these three sections is an excellent exercise in

‘of what they have imagined as the conic section curves, from their consideration of the drawing of Fig.

104. The following three sets of drawings, Figs. 105, 106, and 107, show the constructions necessary

for making half-cones out of thin cardboard cut in their sections of ellipse, parabola, and hyperbola.

The notes and lettering on the drawings will'enable the reader to follow the constructior.. The half-

. . . . ' . .
cone in each case has the same dimensions, and therefore the notes for the first set of drawings apply to

accurate drawing and construction for children of this age. Such models also provide the confirmation
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the other two. The cone may of coursc be varied as regards shape and size. (It should be pointed out that
in the drawings, no means are shown for sticking the various cardbozrd parts together. For this purpose
flanges must be added, and except for the long flange along Oa, these should be kept small as they are
on curves. It may be advisable not to ad flanges to the circular base and the curved section, but to stck
them into position with small independent flanges.) It is not casy to get a good fit in making these
models even if the drawings are done very accurately, because it is almost im possible to make allowance

for the thickness of the cardboard.

" Notes on Models of Cones Cut in Their Sections
(Figs. 105, 106, 107)

. 22
Circumference of base of cone = T X diameter = £l X 3 ) inches = 11 inches (full scale).

This circumference, when the slant surface of the cone is “rolled out” flat, becomes an arc of a circle
whose radius is the length of the slant side = 4.4 inches.

22
2 X—7— X 4.4 inches

Therefore, the circumference of the circle of radius 4.4 inches

1}

[}

) . .
27 3 inches (approx._)

x3
gz < 200

Therefore, the angle of segment of this circle

=.143° (approx.).

The segment of the circle with the angle of 143° s therefore the “flattened ou,” slant side c;f
the cone. Cut along the curve drawn on this segment, and when the - 7

, Oa Oa
corresponding parts of the two radii Oa and Oa
Oe Oe




| -s
cllipsc,
arc joined together by a flange, this curve will form the parabola,

hyperbola,
which the cutting of the cone has produced.

The right-angled triangle constructional drawing gives the lengths necessary for plotting the
points required for drawing the curve on the flattened oug, slant side. This triangle is half the elevation
of the cone. The lettered lengths explain the construction. (The above notes apply to all three cases.)

It is thus clear from the outset that these three curves “belong together” and must be closely
related to one another since they are all obtained from the cutting of a cone. There are a number of
constructions for drawing the conic section curves, and we shall choose to begin with one that has a

certain consistency in it as applied to all three curves. Later on in the chapter, other constructions will

be shown.
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Let us consider the symmetry of the héman form as between right and left: Ifa man stands with
his arms outstretched horizontally, then between fingertip and fingertip, there is an “axis of symmetry”
that exactly divides left from right (see Fig. 108). Thus we see that che axis of symmetry beoween two
points is a straight line, which is the right bisector of the linc joining the two points. Now we will
change one of the points (say Fy) into a straight line and ask: What is the axis of symmetry between a
point and a line? Our problem now is to find all the points in the planc of the paper that are equidistant
from the given point F| and the given line L and join them together by a smooth curve (see Fig. 109).
To do this, we draw a family of straight lines parallel to the given line L. Consider one of these lines, say,
mm. Then somewhere along it, there must be two points, each equidistant from the fixed point F| and
the fixed straight line L, one above and one below the line through F at right angles to line L. Obviously,
since mm is parallel to L, the distance of these points from the line L is XY. Thus with center F| and
radius XY, make arcs cutting mm in P; and Py; then Pj and P, are the required two points. Repeat this
construction for points on the other parallel lines, draw a smooth curve through all the points so
obtained, and the required line of symmetry is obtained. We see that it is a parabola. Thus a parabola is
the line of symmetry between a point and a line. The straight line L is now bent into a circle; this may
be done so as to enclose the point F; or so as to leave the point Fy outside the circle. The first case of the
circle C enclosing the point Fy is shown in Fig. 110, and we see that the line of symmetry between a

point and a circle enclosing it is an ellipse. The construction is the same as for the parabola except that

the points through which the curve is drawn are found not on parallel lines but on concentric or

parallel circles. Now for.the second case where the circle is formed outside the point, we find that the

line of symmetry between such a point and a circle is an hyperB'ola (Fig. 111). It will be noticed thatall

distances of points from the circle lie along “radius lines” passing through its center, m

nat 1s,-along.

pormals to the circle, and that these distances giving the points lying on the leftfhand “wing” of the

hyperbola are the longer of the two possible distances. For exampie, the point P, has two distances from

‘d:le circle lying along the diameter through Py; itis the longer one (XY b that we use in determining this

point. In the foregoing constructions of the ellipse and the hyperbola in which a circle is used, we see

- thiat the center O of the circle gives a second point corresponding to the point Fy; in the future, we shall -

call this second point F, . These two points F; and F; are called the foci of the curves. In the case of the -

vpar‘ab‘ola‘, there :;ppears to be only one focus, Fy. This will be discussed later in the chapter.

The drawings that now follow (Figs. 112-120) show families of conic section curves obtained

by the above method of construction.

e Fig. 112 A family of parabolas having the same focus but the straight line moving

rhythmically. Note that the points determining the curves are formed by
concentric circles (with focus as center) cutting the parallel lines, these lines
being tangents to the circle.
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Fig. 113
Fig. 114
Fig. 115
Fig. 116
Fig. 117
Fig. 118

Fig. 119

Fig. 120

A family of parabolas construcred with reference to the same straight line but
the focus moving rhythmically.

One family of confocal parabolas forming the orthogonal trajectorics of the
anothu (anx;:y.

A family of ellipses having the same foci but the circles moving rhythmically.
Note that the points determining the curves are formed by the intersection
of two series of concentric circles (with foci as centers) that touch one another
in pairs.

A family of ellipses constructed with reference to the same circle but the focus

moving rhythmically. Note that the second focus of each ellipse is the center
of the circle.

A family of similar confocal ellipses. In each ellipse,
Distance between foci 2

Major axis 3

A family of ellipses constructed with reference to the same circle but the focus
moving along the arc of a circle.

A family of hyperbolas having the same foci but the c'rcle moving rhythmically.

Note that the points determining the curves are formed by the intersection
. of two series of concentric ci rcLs {with foci as centers) that touch one another
in pairs.

A family of hyperbolas constricted with reference to the same circle but the

focus moving rhythmically. Note that the second focus of each hyperbola is
the center of the circle.
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In several of these drawings, coﬁccntri_c circles are the basis of the construction. The c_hildren

may be reminded that in their early lessons in geometry they drew such families of circles (see Chapter 3).
So far, all our constructions of the conic section curves have been pointwise. There now follow

121, a point A is taken inside a circle (center O), and rays are drawn from A to the circumference, The
midpoints of th:ese rays ate found (these midpoints lie on 2 circle whose center is the midpoint of AQ),
and from these points lines are drawn at right angles to the rays. These lines mold the form of the ellipse
as shown. The construction is essentially the same for the parabola and hyperbola. In the case of the

parabola, the circle is replaced by a straight line, the rays are drawn from poinc A to this line, and the




right bisectors of these rays are drawn. For the hyperbola, the point A is taken oursidc‘ihc circle, rays are
drawn to the circumference, their shorter and longer distances are bisected, and the right bisectors are
drawn as before. It is interesting to notice that the right bisectors of the two tangent rays are the
asymptotes of the hyperbola.
In the next chapter on projective geometry, furcher examples of linewise constructions of conics
will be given.
' Having become quite familiar with the constructions and forms of these three curves, we are
now in a position to consider some of their fundamental geometrical properties. We shall do this, first,
in relation to the significance of their names, and again we shall see in what follows that there is a

certain unity preserved. From this point of view, the parabola will be considered first.

The Parabola

Where do we find this curve expressed in nature? As a static form it is rarely to be found.
However, as a form expressed in movement, we recognize it at once in the flight of a ball or a stone
thrown into the air or again in the path of aj.t of water or the majestic curve of a waterfall. In mechanical
terms, the parabola arises if a heavy body (a ball, stone, or water), which in the absence of any other

force would move in a straight line with constant velocity, is also acted upon by the force of gravity. (It

should, of course, be noted that the parabolic curve obtained by such a natural phenomenon is only

approximate because there is always the third force of the air resistance acting.) Now the usual geometrical

.

definition of 2 parabola refers to the curve as the path of a moving point as follows: A parabola is the

locus of a point that moves so that the ratio of its distances from a fixed point (F) and a fixed straight line (L) .

- 15 always equal 1o unity. In other words, every point on the curve is the same distance from the fixed

point (F) as it is from the stfaight line (L)" and we see that our construction of the parabola is exactly
according to this definition. The fixed point F is called the focus and the fixed straight line L, the

directrix, and the straight line passing through the focus and pcrpendlcular to the directrix is called the

the directrix r»spectlvely, then by the definition f/ =1, or f=n. Now we have seen that a parabola

is one of the conic section curves shown when a cone is cut by a plane parallel to one of its sides, that is,

axis of the curve. If P is any point on the curve (Flg 124) and. fand n its distances from the focus and -

by a plane that makes an angle with the base of the cone equal to the base angle of the cone. Here again,

this definition of the curve speaks of an equality, this time in the sphere of angular measurement. The
name parabola comes from the Greek work paraballo, which means to throw or set beside, to compare.
It is, of course, the same word as parable, which is a comparison, a similitude, or, simply expressed, an

“earthly story with a heavenly meaning.” The word in its various forms implies an equality.
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Fig 124

Fig 125

Fig. 126




The Ellipée

The corresponding locus definition of an cllipsc is as follows: An ellipse is the locus of a point that
moves so that the ratio of its distances from a fixed point (F) and a fixed straight line (L) is a constant less than
unity. The cllipse in Fig. 125 is constructed as before with reference to a fixed point F and a circle C.
The fixed straight line (L)—the directrix—of the above definition may be determined by drawing
tangents to the ellipse at the extremities of a focal chord. These tangents intersect on the directrix. If P
is any point on the curve and fand # its distances from the focus and the directrix, respectively, then by
the definition, f/ 2 = constant < 7. (For the ellipse in Fig. 125, this constant is approximately 0.78.) To
obtain an ellipse by cutting a cone, the cutting plane must make an angle with the base of the cone less
than the base angle of the cone. The name ellipse comes from the Greek word ellipsis, meaning a “leaving
behind,” an omission, a deficiency. In grammar, an ellipsis is a figure of speech in which one or more

words are left out, although their meaning is implied by the rest of the sentence.

The Hyperbola

For this curve, the corresponding definition states that: @ hyperbola is the locus of a point that
moves so that the ratio of its distances from a fixed point (F) and a fixed straight line (L) is a constant greater
than unity. The hypetbola in Fig. 126 was constructed with reference to.a point and a circle, and the
straight line (L)—the directrix—was determined as for the ellipse. Agam, if P is any point on the curve

and fand 7 its distances from the focus and the directrix, respectively, then by the definition: fly=

“constant > z (for the hyperbola i Fig. 126, this constant is approximately 1.4.) The cutting plane of a

cone to give 2 hyperbola must make an angle with the base of the cone greater than the base angle of the

~cone. The word hyperbola comes from the Greek byperbole which means a “throwing beyond,” an

over—shootmg, " anexcess. In thetoric; hyperbole is a ﬁgure of speech in which exaggerated terms are

o used as a means of em phasxs, for cxample, when we say ‘a thousand apologies!”

CTo sum up then, we may say that the elhpse is a curve of dCﬁ\,lchY, the parabola is a curve of o

equalxty, and the hypcrbola is a curve of exaggeratlon, relatmg these words to the ratios of two lcngths, -

: these rauos oemg less than, equal to, and greater than uruty, respectlvely

" Inaprevious chapter on the four rules of arithmetic treated geometrically, we dxscovered two

‘of these conic sectior: curves, the ellipse and the hyperbola, as “pictures’ of the processes of addition

and- subtractlon, rcspecuvely We shall now proceed to show that there is a common law for all three

curves in that they may be considered as cuives of addition, and that they are three metamorphoses of
one geometrical form. In order to understand this fully, we must now digress somewhat and consider

certain fundamental concepts that belong to modern geometry.
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We will begin with a consideration of parallelism. According to the Euclid definition, two
straight lines arc parallel if, when drawn in the same plane, they do not meet, however far they are
produced in either direction. Now side-by-side with this, we have the axiomatic statement that any two
straight fines drawn in a plane cut one another in one point and onc point only. The definition of
parallelism, though still perhaps the best for use in elementary geometry, is clearly at variance with this
axiom, and such a contradiction is inconsistent with the logic and law of mathematical thinking. Itis a
definition applicable to a limited conception of space. A new definition of parallel lines, suggested by
the principle of continuity and essential for an understanding of more advanced geometrical conceptions,
was first given by Kepler (1604) and Desargues (1639): Lines, drawn in the same plane, are parallel if
they have the same infinitely distant point in common. In other words, parallel lines meet in infinity.
We see that, according to this definition, parallel lines are no exception to the statement that two
straight lines drawn in a plane cut one another in one point and one point only. Furthermore, we shall
see in what follows, and especially in the next chapter on projective geometry, that this conception of
parallelism explains many phenomena of the geometrical nature of space which otherwise are quite
baffling, and it also brings a wonderful consistency and order into geometry. We therefore have to

consider geometry in relation to infinity.

The term infinityin mathematics, expressed simply, means “greater than any conceivable quantity”

and is denoted by the symbol “c0.” The Encyclopaedia Britannica (14th edition) says of infinity: “a term

'used in mathematics, philosophy, and theology with various meanings which are apt to cross each other

and cause confusion.” This confusion arises because our ordinary thinking based on sense perception is
limited to the finite world. To grasp the infinite, aquality of imagination must penetrate our thinking—
“a mathematical imagination” that will carry our thinking beyond the limits of sense-perceptible space.

Now the statement that “parallel lines meet in infinity” implies another imagination; that is,
that there is one point at infinity on a straight line. Thus if we imagine a horizontal straight line
continued infinitely far to the right and again infinitely far to the left, we do not come to two infinitely
distant points, but only one. Let us now see what evidence there is for such a paradoxical statément; real
imagination often presents the human intellect with paradoxes. Consider two straight lines drawn in a
plane, one of tﬂeﬁn.ﬁxed and the other turning on an axis through O perpendicular to the plane (Fig.
127). Suppose the rotating line first cuts the fixed line at right'angles in point B, and then we begin to
turn it in an anti-clockwise direction and watch the passage of the cutting point P as it moves along the
fixed line. As the rotation continues, the point P moves further and further away off the paper to the
right until the moving line has turned through a right angle. Then as the turning continues beyond a
right angle, the point P appears far away along the fixed line to the left until we see it coming back onto
the paper and reaching its starting point when the rotation of the line has passed through two right
angles. We can thus follow the continuous movement of P in our imagination, and we notice that it

always moves in the same direction, provided that the moving line rotates in the same direction, We




may now ask the question: Where is the point P at the moment when the moving line has rotated
through exactly one right angle, that is, when it is parallel to the fixed line? Itis then infinitely far away,
and this point infinitely far to the right is one and the same as the point infinitely far to the left.
Another demonstration of the realitv of rhic fiindamenta! idza it 1o be found in the sphere of
optlcs 1f we foliow the movement of the i image of an object viewed in a concave spherical mirror, we
can come to 1o other conclusion than that there is one point at infinity on a straight line. The series of
drawings in Fig. 128 illustrates, by the well-known construction, the position of the image of an object
as the latter moves towards the mirror. C is the center of curvature of the mirror and F its optical focus,
which is half-way between the mirror and C. (See any elementary textbook on optics.) If I stand in
front of a large concave spherical mirror (. g-» an old searchlight reflector) and walk slowly towards the
mirror holding my hand well in front of my head and watching the movement of the image of my
hand, this is what I observe: the image-hand (I), which is smaller than the object-hand (O) and is
inverred, moves out from in front of the mirror to meet me (Fig. 128a, b). At one position on my
“journey,” I touch the image hand, which has “grown” to the same size as the object hand—I have the

uncanny experience of shaking hands with my own image! This occurs when my hand is 2t the center

of curvature of the mirror (Fig. 128c). As I now walk very slowly forward, I see the image hand still _

coming towards me and growing bigger. I lose sight of it, of course, as it moves away behind me,
although another observer standing behind me can see it passing over my shoulder (Fig. 1284, e).
When I now move forward between the focus and the mirror, I see the i image hand coming to meet me
the latter reaches the mirror (Fig. 128g, h). When the object hand is at the focus (B, the i image Is at

infinity (note the parallel rays). Notice that the i image moves always in the same direction, and at one

from behind the mirror, erect and magnified but diminishing to the same size as the nhmrr hand when

moment, when the object is just approaching the focus, it is a long way in front of the mirror, and the

 next moment, when the ob)ect has just passed the focus, it appcars along way behind the mirror. How
can the image have “traveled” from far away y in front of the mirror to far away behind it? Can it have
-_turned round and come back? No, bccause then the observer would have seen it durmg its passage
”'bctween his eye and the mirror, movmg in tneropposxte direction. As he does not do so, there is only
. one conclus1on we.can make from our “éxperiment,” that is, that the i image makes a continuous journey
| along the str:ught—lme axis of the mirror, through the point at infinity, and back from the same point at
infinity behind the mirror. We see how this is entirely in accordance with the paradoxical statement of
Desargues that a straight line is a circle of infinite radius and that therefore the two extremities of-a
straight line meet at infinity. Two i interesting observations may be noted: The i image changes from
being erect to being inverted in passing through the point at infinity, and during its journey, it never
appears between the mirror and the focus. This is “forbidden ground”; in the case of a convex mirror,
however, the only “territory” the image can occupy is just between the mirror and its focus, which in

this case is behind the mirror. Lewis Carroll knew what he was doing when he wrote Alices Adventures
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in Wonderland and Through the Looking Glass; the Rev. C. L. Dodgson was a mathematical don at
Christ Church, Oxford, and his stories contain imaginations of geometry in relation to infinity.

The reader may well think that chese ideas are too difficult for even older children to assimilate.
From long experience the author finds that this is not so. In fact, they find less difficulty than grownups
because their imagination is generally more alive. Also the mirror experiment will not merely be described
to them, but cach member of the class will experience the phenomenon for him or herself. Again, very
interesting and helpful discussions can arise with the children. It will become evident that to our ordinary
thinking, bound as it is to our physical sense impressions, paralllel lines simply do not meet, and one has
to go beyond ordinary thinking into the realm of imagination to “perceive” that they do meet in-
infinity. The author has sometimes suggested the following ideas to his class: The boundary between
the finite physical world and the realm of the infinite is a boundary of human consciousness. If one
were able to awake from sleep with a cléar consciousness of where, as an individuality, one had been
during sleep, then one would have a real waking knowledge of the world of infinity and of the laws of
that world. With these ideas of modern geometry in mind, we may now continue our study of the conic
section curves. |

The ellipse in Fig. 129 was drawn by the well-known method of a loop of cotton around two
pins stuck into the paper at F} and F,. This method of construction leads directly to the realization that
the ellipse is a curve of addition. Thus, if P and P' are any two points on the ellipse andrjand ryand ry’

and 1," are their distances from the foci F; and F, respectively, then

1 A}
O+ Iy = rn + Iy = constant

- We also see this additive property of the ellipse quite cleariy from the method of construction used

prigiha’lly (see Fig. 110), where the curve appeared as a line of symmetry berween a point (Fy)and a
circle (C) enclosing the point. Thus any point P, on the curve is equidistant from Fj, and the circle C,
thatis, f=c f(;r al_l'positions of P;. Therefore OP; + f= OP; + ¢ = radius of circle C = constant.

Now keeping focus F; fixed, we move the focus F, out along the axis of the curve and obtain
larger and larger ellipses. When F, has been moved mﬁmtely far from Fy, then the ellipse has become
mctamorphoacd into a parabola (Fig. 130). We may say that a parabola is an clhpse with one focus at
infinity. Thus unlike the elhpsc, the parabola appears at first sight to be an open curve. Again we choose
any two points, P and P', on the curve and join them to the foci, Fy and F,. The two lines parallel to the

axis are the focal rays joining the points to F; at infinity. The length F,P is stepped off along F,P' by

drawing arc PL and the length F,P" is stepped off along F,P by drawing the perpendicular P'M, which

is also the arc of a circle with center F, at infinity. Now the two heavily drawn lines PM and P'L are

. found to be equal, which means that the focal ray r;" is longer than ry by the same amount that ry’ is

shorter than r,.
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Brhus for the parabola, r) + £ = PF; + PM + M t0 ®
And lv']'+f2'=LF‘+P'L+P' o ®©
But PF =LF;,PM=PL+Mrto®="0"10®

ry +r)=r; +1, = constant

So the law of the parabola in relation to infinity is the same as that of the ellipse; that is, it is also a curve
of addition. Now if we continue the journey of the focus Fy back from infinity (as it were, from the
other side) into finite space, we obtain the third metamorphosis, as hyperbola (Fig. 131). We may
perhaps say that while the focus F, has been making this continuous infinite journey through the point
at infinity on the axis and back again (though not “back again” by turning round), the ellipse has
changed into a parabola and then has gone through a kind of turning inside-out process together with
a twist to appear once again on the paper in the form of a hyperbola. This “curning inside out” and
“twisting” may be imagined more easily if we follow round each curve, say in a clockwise direction as
shown by the arrows in the three drawings, and at the same time consider the space inside and outside
the curves.

In the case of the ellipse, there is no difficulty in doing this as it is a closed curve containing a
finite space, and therefore its inside and outside are quite obvious and, of course, the two foci are inside

the curve. The mathematics of the ellipse is also easy to follow because the curve is “all there,” and all

the distances concerned with it are finite. The parabola presents more difficulty because it is closed only

if we include infinity in our conception; but even here, we can follow round the curve in our imagination

and experience the inside and the outside quite easily. To try and follow the curvin’g of t_he hyperbola,
we use two “guiding lines,” which form a cross as shown in Fig. 131. These twa lines are called asymptot

(from the Greek word asymprotos, meaning not falling together”), and their position relative to the
hyperbola is found, as shown, by drawing the circle with diameter FF, and the two tangents at the
ends of the curve. The asymprotes are a limiting case of the conic sections, obtained by a plane cuttmg

a cone along its axis; they =re the slant edges of the cone when the cone is viewed in elevation. Now let

us imagine a point moving along the right wing of the hyperbola in the northeast dlrectlon (see Fig.

131) "The curve approaches the asymptote ever more closely the further it goes but touches it only at

seemmgly on the other side of the same asymptote, curves round towards the northwest, approachmg

the second asymptote more and more nearly, touches it at mﬁmty and returns from the southeast. again

- -:mﬁmty (hence the meamng of the word agymptote) It then returns on to the paper from the southwest, .

on the other side, and curves once more towards the northeast to complete its continuous course. The -

space, is where the foci lie. Hence, when we join the two points P and P to focus F; we must do so

.‘ through the inside space as we did in the case of the ellipse and the parabola. Thus P and P, are joined

to F; via infinity. Then by a construction similar to that used with the parabola, we sec that the focal ray

- space where the asymptotes lie is outside the hyperbola, and its inside, embracing finite and infinite -
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ry"is longer than r) (both via infinity) by the same amount (the equal heavily drawn lines PM and P’L)

that ry’ is shorter than ry.

Thus for the hyperbola, ry + 1y = PF; (via @) + PM + MF,

" ’ r;'+ ) =LF (viaoco) + P'L + 'K,
But PF, (via ©) = LF| (via ), PM = P'L, and MF, = P'F,
Therefore, 1y + 1) =1 + 1)’ = constant

Thus the law of the hyperbola in relation to infinity is the same as that of the ellipse and the parabola.
That is, it is also a curve of addition.

We can now understand why in Chapter 5, the hyperbola appeared as a picture of subtraction.
We then considered one of the focal distances across the outside of the curve (focal distances z or cin
the three drawings of Fig. 86, and this is of course a necessary substitute if we require to make an actual
measurement of length. This substitute relationship of constant difference instead of constant sum may
be shown as follows from our present drawing (Fig. 131) if we consider the two “dotted” lines joining

P and P’ 1o Fy across the outside of the curve (7; and 7, respectively):

ny —ry=PF; - (PM + MF,) = PF; - PM - MF,
n' -1, =(LF; -LP)-P'F,=LF, -LP'-PF,
But PF, =LF;,PM =LP', and MF, = P'F,
Therefore n —I= n -1y - constant

During their drawing of the conic section curves, the children will often ask the question as to

the difference between a parabola and one branch ofa hyperbola, since they both open out into the

infinite. The difference is in the whole way in which the two curves go out into infinity; and the
fol‘owing drawings (Figs. 132 and 133) illustrate this.

. InFig. 132 are shown four identical parabolas and in Fig. 133 two 1dent1cal rectangular hyperbolas
(i.e., hyperbolas havmg theu' asymptotes at nght angles) constructed by the same method as Figs. 109
and 111. The distances b_etween the foci in the two sets of drawings are the same so that the figures are
comparable. We sec how the parabola curves gently and slowly away into the infinite while the hyperbola
shoots off into infinity very rapidly. The cross formed by the four parabolas is an artistic form, while
that formed by thé two hyperbolas has more the appeararice of part of a machine. '

We have seen both in this chapter and in Chapter 5 that there are many interesting ways in
which the-teacher can construct and characterize the conic section curves and lead the «children to

understand them from different points of view.




What we have claborated here in some detail enables us to see the wonderful unity of inner law
expressing itsclf in these three curves, which outwardly appear in such differing forms. They are, in fact,
three metamorphoses of a fundamental geometrical form: a unity revealing itself as a trinity, which is
perhaps one of the greatest realities to be found in mankind’s comprehension of himself and of the

universe around him.'* It may be added that such a fundamental reality belongs to 2 more imaginative

P
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and spiritual understanding of phenomena than is usual in our ordinary life of thought, and it is this we

‘ gi are attempting here in studying the conic section curves in relation to the infinite.
§ic
L) Let us consider this trinity of the conic section curves in relation to certain natural phenomena.

The ellipse and its limiting form, the circle, are to be found everywhere as fundamental forms in the

o

creations of nature. From the spherical form of the earth to the tiny spherical or cllipsoidal shapes of an
organic cell structure, we find this curve universally expressed. It is a basic form in | the material world.

Now the hyperbola, both in its geometrical form and in its expression in natural phenomena, is the
polar opposite of the ellipse. Since it isan open curve embracing infinite space, it is obvious that itis not
to be found as a form assumed by material substance. It is, however, to be found in a more subtle way
in relation to the least dense state of matter, that is, a gas, and just in connection with the effect of the
still more imponderable element of heat on the gas. Unlike the solid and the liquid, all gases expand

under the influence of heat by the same ‘amount.

Every true gas expands = of its volume at 0° C for every 1° C rise in temperature. Each

particular solid or liquid has its own 1nd1v1dual coefﬁaent of expansion. The hindrance to the expansion.
of a gas is given by the wall of the gas container, and the expression of this hindrance is the pressure that
Lh» gas exerts. In this pressure cne can, so to say, I read off the “expansion-striving’ " of the gas.

- Now the physxcal law according to which, at constant temperature, the pressure of a gas varies
relative to the space it occupies is the well-known Boyle's Law, which states that, at constant temperature,

the . product of the pressure and the volume of a given mass of gas remains constant. That is, PV =

ofa rectangular hyperbola. Yet again, we may refer to two eadlier drawings where, although the curves

‘have not actually been drawn, the rectangular hyperbola can readily be seen. Fxg 26 in Chapter: 3 shows

a famﬂy of rectangles of equal area (length X bréadch = constant), which is the law of the hyperbola. The
curve may be obtamcd by joining the corncrs of the rectanglcs by a smooth curve. In Flg 27 we havea
family of rhombuses of equal area, and here their sides envelop hyperbolic curves. This gives a linewise
construction for a hyperbola, whereas the constant area rectangle method is pointwise. So we may say
that the hyperbola appears as the geometrical expression of a law of nature concerned with the effect of
a nonmaterial entity (heat) on the least dense state of matter (a gas). How polancally different this is

from the appearance of the ellipse in the material, substantial forms that Nature creates! Thus the ellipse

properties and their manifestation in natural phenomena, though they are a unity through the fact that

. constant. The graphical picture of iais law, plotted with rectangular Cartesian coordmates is one wmg'

and the hyperbola are to one another as two members of a polarity, both as regards their geometrical
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they express a common law in thar they are both curves of addition. In beeween them as a balancing,
compensating element stands the parabola. The extremes of ellipsis and hyperbola find the;r balancc in

the parabola. The ellipse belongs entirely to finite space and is fully comprehended within thar space;

the hyperbola has its “being” in infinite space and 1s only understood in relation to infinity: it merely

shoots its “extremities” into finite space while its real “body” remains hidden from physical perception.
The parabola in a gentle, harmonious way binds the finite and the infinite together. We comprehend it
partly in physical and partly in infinite space, and we can follow jts curving line in our imagination
without difficulty, whereas to do so in the case of the hyperbola requires what we may call a kind of
“mental gymnastics” in the sphete of the imagination. Now in the world of physical phenomena we
find that the parabola manifests jeself in just this mediating role between the finite and the infinite—
between the earth and the heavens. Again, since it is not a closed curve, we do not find it as a form
enclosing substantial matter as jn the case of the ellipse, or rather ellipscid, but as a “cortainer” for
super-earthly forces and energies. A parabolic mirror, directed with its axis towards the sun, reflects the
light and the heat of the sun exactly to its focal point. The light and heat coming from infinite space are
concentrated, condensed at this one point in finite space. (The German word for focus Brennpunkt,
burning point, is very descriptive of this phenomenon.) If, on the other hand, we consider a parabolic
curve with its axis pointing the opposite way-toward the center of the earth, then we have a picture of
the flight of a solid body through the air, or the course of a jet of water spurting out of a hose pipe. Thus

the parabola conceals within jtself cosmic and earthly laws; it belongs both to the sunlight and to

carthly gravity. The followine drawings (Figs. 134 and 135) iliustrate these two aspects of the parabola—
Y 8F: ty. ol & 18; P p

the reflection of the sun’s light to a focus point and the path of a body projected from the earth’s surface

at an angle of 45° with an initial velocity of 128 feet. per second. (As pointed out earlier, the projectile

that light Arayi‘ng out from one focus of an ellipse would be reflected to and concentrated exactly at the

“other focus, while from the focus of a parabola, light after reflection streams out in parallel rays into

infinite spacé. The reflector of the modern motor-car lamp is parabolic, as also are the mirrors in
reflecting microscopes and telescopes with which we obtain the infinite within our finite field of sight.
There is an interesting phenomenon that may be observed when light is reflected from a circular or
spherical surface; we may b‘ecom'ev aware of this if we look on to the surface of a éup of tea when the sun
is shining on the white inside surface of the cup. We then see a beautiful curve of light against the dark
background of the tea. . ‘

This phenomenon is illustrated in Fig. 136, the curve being shown in thick line. This is known
as a caustic curve, with its cusb halfway between the mirrorand its center of curvature. It is formed by
the reflected light that is not all concentrated at the focus as in the case of 2 parabolic mirror. Only the
light falling on a small aperture of mirror near the pole is reflected to the focus, the light outside this

being focussed progressively nearer to the mirror. This explains why, when a spherical mirror is used




- o e At oy be allowed to fall on a smal] aperture of the mirror if we
require a sharp focussing of the light. Otherwise we get the phenomenon shown here which is called
“spherical aberracion.” The parabolic mirror wich the same focus is shown by the broken line. Ie wilj be

noticed that the two mirrors very nearly coincide over 2 small aperture, and it is therefore for this small

particular sphere of our studies, and the reader is therefore referred to an article by Ernst Bindel, “Die

Kegelschnitte in menschengemasser Behandlung,” published in the Jahrbuch der naturwissen-schafilichen

Sektion der Freien Hochschule fur Geiste:wissemc/yaﬁ am Goetheanum, Domach, near Basel, Switzerland.

countless shadows of trees, buildings, and other objects are cast over the surface of the carth by the light
of Sun, moon, and stars, and the ends of these shadows, as they move, trace one or other of the conic
section curves. At the poles where all the heavenly bodies describe horizontal circles, the “shadow
curve” traced out on the earth is itself a circle, Travelling away from the poles we find the shadow curve
changed to an ellipse. In these polar regions, there are quite a few stars that rise and set, and their
shadow curve appears as a hyperbola, while those stars that exactly touch the horizon in the course of

their daily journal form 2 parabola as their shadow curve. Thus in the polar regions of the earth where

elliptical shadow curves traced out on the surface of the <arth. (The word shadpy here does not always

signvify a visible shadow; only the Sun and the moon cast visible shadows.) At the equator, on the other _

hand, where the srars daily rise and set, all the shadow curves are hyperbolic. Here again, the fundamental

polarity of ellipse and hyperbola is expressed.
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Fig. 1284, b, ¢, d
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Fig. 129
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Fig. 131
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Fig. 132

Fig 133 -
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Fig. 134

Fig. 135
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Chapter 8

Projective Geometry

. Wherever we look we see a perspective view. An expert artist or craftsman standing before a

| group of objects records exactly what he sees; the result is a perspective drawing. The well-known

painting in the National Gallery, London, of the avenue of trees by the Dutch artist Hobbema (1638

1709) immediately comes to mind. It was only at the beginning of the modern age that artists and

scientists awakened to an experience of spatial perspective. Filippo Brunelleschi (1377-1446), the leader

of a group of young Florentine artists, was not only the initiator of Renaissance architecture but made

-the momentous discovery of pexspectlve in the field of art. Other famous artists such as Leonardo da

Vinci (1452-1519) and Albrecht Diirer (1471-1529) developed it to a very high degree of perfecuon
One of the first pamtmgs made accordmg to the mathematical rules of perspective is a wall painting in

the chuitch of St. Maria Novella, Florence, and represents the Holy Trinity with the Virgin and St. John

" at the foot of the Cross and the donors, a merchant'and his wife, kneeling outside (Plate 5). The artist
was Tommaso Guidi (1401~ 1428) nicknamed Masaccio, meaning “clumsy Thomas.” As E. H.

Gombiich says in The Story ofArt “He must have been an extraordinary genius, for we know that he

died when hardly twenty-eight years of age, and that, by that time, he had already brought about a

- complete revolution in painting. . . . We can imagine how amazed the Florentines must have been when

lock i into a new chapcl in Brunelleschi’s modern stvle

This was indeed the beginning of 2 new age. The individuality of man takes a great step forward;

he made quite a new approach to the external world, and he |ookcd out into the wide surrounding

spaces and saw objects and phenomena ina different way. The artist was the forerunner of this new way

of looking at the world—perhaps the artist is always the forerunner of a new age in man’s development.

. .this wall painting was unveiled and seemed to have made a hole in the wall thro: ugh which they could --

Then came the fifteenth and sixteenth centuries, the age of the great discoveries and explorations of the:

earth: Henry the Navigator, Christopher Columbus, Vasco da Gama, Ferdinand Magellan, and others.
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While these men were exploring the world, others, no less adventurous and courageous, were beginning
to explore the material substance and phenomena of the earth and of the heavens in quite a new way:
Copernicus, Galileo, Francis Bacon, and later in the seventeenth century, Sir Isaac Newton, were bringing
in the age of natural science, which has increasingly dominated the lives of people the world over down
tw vur own gay and brought to us such wonderful achievements.

This new and independent man standing with his feet firmly planted on the earth and looking
out upon the world with a penetrating gaze is wonderfully portrayed in Donatello’s marble statue of St.
George from the Church of Orsanmichele, Florence (Plate 6). Donatello (1386-1466) was the greatest
sculptor of Brunelleschi’s circle. Referring to this statue Gombrich says, “If we think back to the Gothic
statues outside the great cathedrals, we realize how complet_dy Donatello broke with the past. These
Gothic statues hovered at the sides of the porches in calm and sclemn rows looking like beings from a
different world. Donatello’s St. George stands firmly on the ground, his feet planted resolutely on the
earth as if he werc determined not to yield an inch. His face has nohe of the vague and serene beauty of
medieval saints; it is all energy and concentration. He seems to watch the approach of the monster and
to take its measure, hishands resting on his shield, his whole attitude tense with defiant determination.”’’

Itis indeed to the great Italiain masters of painting that we owe this “conquest” of the delineation
of space in their works of art. Leonardo da Vinci (1452-1519) (see Plate 3) and Raphael (1483-1 520),
to name only two, painited in the most accurate perspective. Among the northern artists, Diirer (1471-
1528) was also a master of perspective drawing and wrote a textbook on the subject. Although sometimes

his perspective drawing was inaccurate, a fine example of his work is Sz. Jerome in His Study (Plate 7).




Plate 5




Plate 6
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Plate 7
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This practical art of perspective originating in the fifteenth century developed gradually into
pure mathemarical conceptions of the nature of space itself. Thus there arose what is now known as
projective geometry, which, although it embraces the theory of perspective, goes far beyond this and
illuminates for us the very way in which space is built up.

Early in che seventeenth century, the first real advance since the time of the ancient Greeks was
made in geometry. There were two main streams: (1) the analytic stream associated with the name of
Descartes, who published the first treatise on the subject in 1637, and (2) the synthetic stream, with the
new principle of perspective. The early investigators in synthetic or projective geometry were Desargues
(1593-1662), an architect and engineer of Lyons, and Pascal (1623-1662), the famous French
philosopher and mathematician. Contemporary with these investigations was the constant research
into the difficult problem of the classical Euclidean georﬁetr)g namely the axiom of parallelism, to
which we have already referred in the previous chapter. The study of projective geometry reached
mature development in the nineteenth century in the works of Jacob Steiner and others, and it became
the basis of all geometry. In fact, the Eng['ish mathematician Arthur Cayley said: “Projective geometry
is all Geometry.” In our day, there are 2 number of important works on the subject by leading
mathematicians, and these are mentioned in the booklist at the end of this book. In this connection,
special mention should be made of the valhable_ research work being carried out by George Adams' of
the Goethean Science Foundation, Clent, Stourbridge, Worcestershire, and by L. Locher-Ernst of the
Goetheanum, Dornach, Switzerland. Following indications given by Rudolf Steiner, Adams is showing
“the high significance of the new geometry for a more spiritual idea of space, and for a world coriception
free from the bonds of niive materialistic fancy.” He has already written several important books (see
Selected List of Books), of which the last shows how the conccptlons mherem in projective geometry
give us 2-real. understandmg of plant forms and growth.

Both for its own sake and because it is “a// Geometry” and therefore belongs to 2 new and more

spiritual undcrstandmg of spatial form and phenomena, it should be an essential part of a school

,cumculum Being a very wide subject, the teacher may have some difficulty in deciding where to begin

and with what aspects he or she should deal and how to present them. What now foliows has aiisen out
of the experience of the author in teaching this subject to boys and gitls of 17 and 18 over a number of

years. A further important aspect of this work in education is that it calls forth in the pupil a kind of

| _thmkmg that has a strong imaginative quahty The ¢ thought forms” of pro;emve geometry are them-
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selves of such a nature.
We may take our start from a consideration of point, line, and plane, the three ideal geomctrical

entities of which all forms are a synthesis. This also applies to curved forms. The older classical geométry

and especially the Cartesian analytical geometry, concerning themselves essentially with fixed and rigid -

forms, regard the point as the fundamental entity, and the straight line and the plane are, generally

speaking, considered as composite entities made up of innumerabole poiats. This emphasis on the point
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is to be found again in the conceptions of modern physics with its cenerifugal and centripetal forces,
that is, forces acting away from and towards point centers. Cartesian geometry is thus a most efficient
handmaid for the ideas of physical science. Projective geometry however does not consider the point as
having such unique importance; point and planc are equally valid and of equal importance as fundamental
entities of space. Thus we may still consider the plane as formed by innumerable points, but then we
must regard the point also as composite and formed by an infinitude of planes that contain it. Or, vice
versa, if we consider the point as a single whole, we may also regard the plane in the same way, that is,
as a single entity. Between these two polar enities of point and plane lies the third, the straight line,
which as it were mediates between them. Lines ray through space weaving the countless forms that
occupy space. Now the line"” itself may be considered in three ways: (1) as an individual, self-contained
entity, (2) as made up of an infinite number of points, and (3) as made up of an infinite number of
planes. Thus, if we consider the points of a line as its parts, we must also consider the planes of a line
(i.e., the planes that have the line as their common axis) as its parts, since we are not regarding the point
as having more validity and importance than the plane. Qualitatively we may see the point and the
plane as the expressions of the great polarity of contraction and expansion, while the line, contracted in
one dimension and expanded in the other, mediates between these polar opposites. The author is aware
that in the customary treatment of th< subject, point, line, and plane are not dealt with in this way in
introducing projective geometry. For example, A. N. Whitehead and Veblen and Young begin their
writings with axioms or assumptions in which the point is treated as the ﬁmdamental entity. The
present method of approach leads, in the author’s opinion, to a more 1magmat1ve conception of space
and is also one that can be more readily grasped by the boy or vgirl of school age.

There is a fundamental principle of pro;ectlve geometry to which we shall often refer, known as
the principle of duality.'® Actually we have core across it already in the dual relationship of the five

regular solids (see Chapter 6). In every theorem of pro;ectlve geometry concerned with points, lines,

and planes and ﬁgures arising from them, 1f we change the word pointinto plane or planeinto poins, we

obtain an equally valid statement of trath." Each thcorem is then said to be the dual of the other. The

followmg are simple exaruples that are qurte self—evxder. t or axiomatic:

Any two pairzts i.n,spz_rce have one line, |  Any two plaresin space have one

and one line only, in common (the =~ line, and one line only, in common.

straight line joining them). | (When the planes are parallel this
line is at infinity.)

Any three points in space, not in the Any threé planes in space, not in the

same straight line, have a single plane same straight line, have a single

in common. ' point in common.
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As plane is to point, so point is to plane. Consider a sphere; then by infinite expansion the sphere
becomes the planc at infinity, and by infinite contraction it becomes a point (the center):>® From what
has already been said it will be evident that the concept of infinity belongs essentially to this geometry. ’
This concept of infinity has been referred to in some detail in the previous chapter. Here we shall be
dealing mostly with the two-dimensional aspect of projective geometry, namely with the relationships
of lines and paints in a plane, where the most expanded entity is the line. So the principle of duality will

concern points and lines: As line is to point so point is to line.
Any two lines (drawn in a plane) . Any two points determine a line.
determine a point. (If the lines are

parallel, the point is at infinity.) -

So much then for some of the basic ideas by way of introduction.

Let us bogin with a simple drawihg, which is actributed to Pascal (Fig.137).

Fig. 137

_' - Fig. 138
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A hexagon is inscribed in a circle; the opposite pairs of sides; that is, sides 1,4; 2,5; and 3, 6, are
produced to meet in three points. Then these three points always lic in a straight line (called Pascal’s
line). What a simple and remarkable relation of lines and points this is! There is no measurement of
lines or angles, the hexagon is quite irregular, and yet the three points always yield a seraighe line. Truly
it must belong to the very nature of space that this should be so! According to the particular hexagon
drawn in the circle, Pascal’s line may be “north, south, east, or west,” and it may be nearer to the circle
or further away— it may be anywhere. Now if the hexagon is regular (Fig. 138), the opposite pairs of
sides meet in infinity (see Chapter 7). Therefore, the three points in which they meet are at infinity and
thus Pascal’s line is at infinity. Consider next a hexagon drawn outside a circle having its sides tangential
to the circle, and change the above description of Fig. 137 so that the word sides becomes pointsand the
word points becomes lines. Then we have a description of Fig. 139. A hexagon-is circumscribed round
acircle; the opposite pairs of points are joined, that is, points 1,4; 2,5; and 3,6, by three lines; then these
three lines always lie in a point (called Brianchon’s point after the French mathematician C. J. Brianchon,
1806). This is another example of the principle of duality. When the hexagon is regular, Brianchon’s
point is the center of the circle (Fig. 140). If we consider these two theorems of Pascal and Brianchon
together, we see that the line at infinity (Pascal’s line for a regular hexagon inside a circle) corresponds
or is related to the point center (Brianchon'’s point for a regular héxagon outside a circle). This corresponds
in plane geometry to what we have already referred to as the great polarity of point (infinite contraction)

and plane (infinite expansion).
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Fig. 143

Fig. 144
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Fig. 145

Fig. 146




Now we have scen in the last chapter chat the cirdle is onc of the conic section curves—it is what
the ellipse becomes when the two foci coincide. We should therefore expect that since Pascal’s and
Brianchon’s theorems express a pure relationship of lines and points in a plane, they would be valid for
any of the conic sections. This is indeed the case, as the drawings for the cllipse, parabola, and hy-
perbola show. In the case of the ellipse, it is also evident if we look at Fig. 137 on the slang; the circle
then appears as an ellipse, all the angles between the lines appear different, and yet the three points still
remain in a straight line. This is, of course, a projection of Fig. 137. Similarly, Fig. 139 may also be
projected to give Brianchon’s point in an ellipse. Figs. 141 to 146 show Pascal’s line and Brianchon’s
point for the ellipse, parabola, and hyperbola. In Fig. 144 where the hexagon is drawn outside the
parabola, the angles 2, 3, and 4 are re-entrant (angles pointing inwards); it must be remembered that a
hexagon is any figure made up of six lines. The hexagon drawn inside a hyperbola (Fig. 145) must be an
open figure; sides 1 and 4 meet the curve from infinity. Fig. 146 shows the hexagon drawn outside a
hyperbola; here two of the sides are parts of the asymptotes (the other parts being shown by dotted
lines), which touch the curve in infinity. It should also be noticed how entirely consistent these drawings
are; in each case Pascal’s line is outside the curve and Brianchon’s point is inside. Now it is also possible

to draw the hexagons in such a way that Pascal’s line is inside or cuts across the curve, and Brianchon’s

point is outside the curve. If we take six points at random on the circumference of a circle (Fig. 147a),

one point can be joined to each of the others in five ways. This will give altogether:

5 x4 x3x2x1 =120 hexagons

hese will be the same, 5o the wtal numbei of different possibilities will be 60. Four of these

are shown as examples (Fig. 147). Of course, 1 of the 60 will be when the points are joined in order of

thieir arrangement round the circle, and then we have the case of Fig. 137. Pascal called these conﬁguratibns

of six lines drawn in a conic “the mystic hexagram.” Fig. 148 is an example of one possible hexagon

drawn outside a circle so as to give Brianchon’s point outside.
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Fig. 147
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Fig. 148




Fig 149

Fig. 150
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Fig. 153

Fig. 154




Earlicr in this chapter we said that lines ray thriough space, weaving the countless forms that
occupy space. In Pascal’s theorem, we have a striking example of this. Referring to Fig. 137, we sec how
a particular hexagon is formed by the weaving of six lines raying into the space of the circle in pairs from
three points that lic in a straight line. Every hexagon in a conic is relaced to a particular straight line. Or,
we may say that the hexagon is created from the straight line. Now when che line is at infinity, the
hexagon may become regular (Fig. 138), the pairs of rays from the three points being parallel. This is a
very significant fact in relation to form in nature. When nature chooses to create forms or cells with
straight lines or edges, she generally chooses che regular hexagonal form. The reader is referred to
D’Arcy W. Thompson's book Growth and Form, where a whole section of Chapter 7 on “The Forms of
Tissues or Cell-Aggregates” is concerned with hexagonal symmetry. Here we will mention only one
example from each of the kingdoms of nature. Perhaps one of the most beautiful and purest of the
minerals is quartz (commonly called crystal), which crystallizes in hexagonal prisms capped with pyramids.
In the plant kingdom, the lily is the traditional flower of purity. (One remembers the lily carried by the
Archéngel Gabriel in paintings of the Annunciation by the Old Masters.) And in the delicate epidermis
of a leaf or young shoot of a monocotyledon, hexagonal cells of the most exquisite regularity are revealed.
A creature of the animal kingdom that expresses, as a kind of nature parable, purity and selflessness in
its whole activity is the bee, and the bee’s cell or honeycomb is a most beautiful hexagonal structure.
These are rather special examples, and as D’Arcy Thompson says, “The hexagonal pattern is illustrated
among organisms in countless cases, but those in which the pattern is perfectly regular, by reason of
perfect uniformity of force and perfect cquality of the individual cells, are not so numerous. The hexagonal
cells of the pigmented epithelium of the retina are a good example. . . . An equally symmetrical case,
o‘né‘bf the first-known examples of an ‘epitheliun,’ is to be found on the inner wall of the amnion,

where, as Theocdor Schwann remarked, ‘Die sechseckigen Plattchen sind sehr schén und gross’.” %!

Various utilitarian reasons have been given for the prevalence of the regular hexagon as a

line regular figures that will form a netwoik filling a plane Withbu?ény gaps or interstices are the

equilateral _tri:ingle, the square; and the hexagon (Fig. 149). Of these, the strongest form is the hexé_go_n.

. Pappus, the eminent Alexandrine geometrician of the third century A.D., as having come to the

conclusion that bees were endowed with “a certain geometrical forethought” and that from the three
_ ge ght” anc v

fundamental form in nature. First, it is entirely economical in the partitioning of space; the only straight-

' D’Ar‘cy Thompson devotes some 20 pages of his boék'to consideration of the bee’s cell. He quotes

possible forms, which of themselves can fill up the space round a point, “the becs have wisely selected -

for their structure that which contains most angles, suspecting indeed that it could hold more honey

than either of the other two.” Darwin, in The Origin of Species, refers to- the bee’s architecture as “the

most wonderful of known instincts” and says that “beyond this stage of perfection in architecture

- natural selection could not lead; for the comb of the hive-bee, as far as we can see, is absolutely perfect

. . 2 . :
in economizing wax.” ** Now according to D’Azcy Thompson, later research has shown that this
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“economy” theory is not correct. “The bee makes no cconomies; and whatever cconomies lic in the
theoretical construction, the bee’s handiwork is not fine nor accurate enough to take advantage of
them.” Again he says “that the beautiful regularity of the bec's architecture is due to some automatic
play of the physical forces, and that it were fantastic to assume (with Pappus and Reaumur) that the bee
intentionally secks for a method of economizing wax, is certain; but the precise manner of this automatic
action is not clear. . . . The question is, to what particular force are we to ascribe the plane surfaces and
definite angles which define the sides of the cell in all these cases, and the ends of the cell where one row
meets and opposes another?”™

Is not an answer to this question perhaps to be found in an understanding and interpretation of
projective geometry? It is one of the objects of this chapter to show that in the study of this geometry,
we are learning about the very nature of space itself and that the thought-forms required in this study
lead us from the geometry itself out into different realms of knowledge and experience. Can we really
ever understand the coming into being of, say, the bee’s cell by considering “automatic action” within
the sphere of physical matter and physical forces? Surely, projective geometry tells us to look elsewhere—
to look out into the wide circumference of the universe and to recognize that although the earth gives
the substance (wax, in the case of the bee’s cell), the form of the hexagon arises through the activity of
the bee working in harmony with cosmic forces pouring into the substance from the infinitudes of
space. So, t0o, may we not conceive that the hexagonal form of the quartz crystal was built into the
silica substance by such forces working onto the earth from the infinite periphery, but this time directly,
not through the cooperation of any living organism? Thus the regular hexagon related to the Pascal line
atinfinity may indeed be considered not merely as a fact of geometry divorced from natural phenomena
but as a thought-form that belongs intrinsicaily to such phenomena.

Is there anything corresponding to the Pascal and Brianchon theorems for a pentagon? Figs.
1502 and 150b show a pentagon drawn inside and outside a circle. In Fig. 150a we see that the pentagon
has two pairs of apposite sides. If we produce the remaining side and draw the tangent to the circle at
the opposite cornet, we get the third point, which lies in the same straight line as the other two. The

tangent may be considered as the sixth side of a hexagon “shrunk to nothing.” In other words, Pascal’s

| theorem still holds for a pentagon when we treat it as a “degenerate hexagon.” Treating the pentagon
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outside the circle in a similar manner, we see that Brianchon’s theorem is applicable (Fig. 150b); the

third line joins the remaining corner to the point of contact of the opposite side with the circle. This

point of contact 1s the “degenerate” sixth corner of the figure ‘considered as a hexagon Corresponding
drawings may also be done with respect to the other conic section curves.

Now we come to a figure with four sides—a quadrilateral or quadrangle, * and this brings us to
the very important and well-known theorem of pole and polar. Fig. 151 illustrates this theorem. We see
here three quadrangles inscribed in a circle—ABDE, :ACDF, and BCEF—which are related to one

another in that their diagonals all pass through a common point P. If we produce the opposite pairs of




sides of these thiee figures, we get six points that all lic in a straight line (pp). The linc s said to be the
polar of the point P, which is called the pole. The number of quadrangles chat may be drawn is not
limited to three. Any number may be drawn so long as their diagonals all pass through the pole P
Therefore we can obrain an infinite number of points lying in the polar (pp), although many of these
points will be “off the paper.” It may be remarked here that the only difficulty in carrying out this and
the previous drawings of this chapter is in getting them on the paper. This needs a little forethoughe,
and then after the first drawing is done, one’s imagination can picture the further possibilities. The only
instruments required are a straight edge, a compass, and a sharp pencil; it may be emphasized again that
no measurement of any kind is involved. It will be evident that the position of the polar line outside the
circle is entirely dependent on the position of the pole within the circle and, furthermore, that the line
joining the center of the circle O and the pole P is always at right angles to the polar (pp) (this is shown
in chain line). If the pole is near the circumference, then the polar is near the circle; if the pole is near
the center, then the polar is very far away. This leads us to consider the special case when the quadrangles
are parallelograms, and as they are to be inscribed in a circle, they must at the same time be rectangles.
Three of these are shown in Fig. 152, although there are an infinite number that can be drawn. The

diagonals of all these rectangles pass through the center of the circle, which is therefore the pole P

Where is the polar line and in what direction? It is at infinity and is at one and the same time in all:

directions. In other words, what would seem to be an infinitely big circle may be regarded as a straight
line, the so-called line at infinity. In this case then, pole and polar are related to one another as point
center and infinite horizon.

Here again we have perhaps a picture of a universal phenomenon. The tiny unicellular organism
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The theorem of pole and polar applies to all the conic section curves. For the c1rcle, however,

there is another construction that does not 1nvolve the drawmg of quadrangles, this is 1llusttated in Fig,

. OP cutting the c1rclc in M. Draw a tangent to the circle at M (at right anglcs to the radlus OM) cuttmg
o)y produced in N. The line drawn at N at rlght angles to ON is then the polar (pp) of the pole. P This

find the pole. Fig. 154 shows the corresponding construction for this: the polar line pp is given, and
from the center O of the circle, a perpendicular ON is dropped onto the line and a semicircle is drawn
on ON as diameter, cutting the circle in M. From M, drop a perpendicular MP onto ON; then P is the

required pole. Now the pole may be outside the circle; then the polar cuts the circle. For example, if in

MP is part of the polar). Thus when the pole is at infinity, the polar coincides with a diameter of the
circle. Fig. 155 illustrates a furcher relationship: the pairs of tangents drawn at the extremitie¢ of the

chords passing through the pole, P, meet in points lying on the polar.

~ 153. P is the pole within the circle of center O; join OP and at P draw a semi-chiord at tighe anglcs to-.

_gelgtlonshlp of po_le and polar is gc_:qproca_l, gl_v_en the pole, we-can find the polar; given the polar, we; can

~either of the two foregoing drawings, the point N is the pole, then the polar is the line MP (or rather -
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© Fig. 157

If, as in the case of the pentagon, we also consider the quadrangle as a degenerate ‘h_exagon, theh
we can treat it from the point of view of the Pascal and Brianchon theorems. Fig. 156 again shows a.
quadrangle inscribed in & circle. The opposite sides 1,3 and 2,4 are produced to'givev two points; the
other two sides of the degenerate hexagon are the tangents to the circle at ppposite corners of the
quadrilateral, and these tangents meer in the third point on Pascal’s linc (the polar pp). It will be
noticed that what wé have described here is a combination of two of the methods of constructing pole
and polar already d:cscribéd, the producing of opposite pairs of sides of the quadrilateral, and the .

drawing of tangents at the extremities of a chord through the pole P. (The tangents at the other pair of




!
. . ..
corners could be drawn to give the same result, only here they would not meet on the paper.) In'Fig.

157 we have a quadrilateral circumscribing a circle; join the opposite pairs of corners and also the
points where an opposite pair of sides touch the circle (these points being the two degenerate angles),
and we get three lines lying in a Brianchon point, P (A fourth line also passing through P may be drawn
joining the points of contact of the other pair of sides.) Now the diagonals of the quadrilateral cut the

circle in four points, which therefore determine an inscribed quadrilateral (drawn in chain line), whose

opposite pairs of sides produced determine the polar (pp) of the pole P” Thus from these considera-
tions of the quadrilateral as a degenerate hexagon, the principle of duality applied to the theorem of
pole and polar shows us that this theorem is self-dual.

We have now considered the remarkable relationships of lines and points in a plane in connection
with six-sided, five-sided, and four-sided figures inscribed in or circumscribed to any of the conic
section curves. It now remains for us to study a three-sided figure—a triangle—in a similar way.

Triangles of every shape may be drawn inside or outside a conic, so in this case there is no need
to draw the conic. Fig. 158 shows a triangle and a point inside it. Rays are drawn from the angular
points of the triangle through this point onto the opposite sides. This gives three points that determine
a smaller triangle inscribed in the larger one. Now produce the opposite pairs of sides of these two

RS triangles and we get three points that liein a straight line. The position of the line and its distance from
‘+ the triangle depend on the position of the point within the triangle. The line may be anywhere outside,
as the point may be anywhere inside; we will therefore consider the case when the line is at infinity. This
means that the three points that determine the line are at infinity and that each of these three points is
determined by a pair of parallel lines; this will occur when the sides of the small triangle are parallel to
the sides of the larger one (Fig. 159). Where then is the point within the triangle? Elementary geometry
proves that it is the point where the medians intersect. (The medians are the three lines joining the
angular points of a triangle to the m'idpoints.__of the opposite sides.) What is this point? It is none other
than the center of gravity or center of balance of the triangle. If we cut a triangle out of a piece of
cardboard, we shall find that this triangular lamina will balance on the point of a pin placed at this
point. Thus the center of harmonious balance is related to the infinite circumference. We see that this
_ is entirely in keeping with what we have found before: that perfection of form and harmony of balance
,{ ~ onthe carth come about through the dynamic activity of forces playing into physical substance from --
" theinfinite circumference of the universe. During the past 50 years, some leading scientists have become |
incréaﬁingly aware that such influences exist and that an understanding of them is essential for a true
knowledge of the phenomena of the physié:ﬂf world. At the risk of being considered “unscientific” or
“unmathematical,” the author would suggest that what we have said here as an interpretation or
application of these conceptions of projective geometry belongs also to man’s relation to the spiritual
world. Man can reach his full stature and possibilities only ins:ofar as he relates himself to the world of

spirit to which his real inner being belongs. Heisa citizen of two worlds—the outer world of physical
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| ¢
space and an inner world of spiritual experience. He belongs to the carth and to the heavens as point
center does to the infinite circumference encircling it. If this is a true picture, then clearly, the concepts
of infinity and of spiritual or divine are not unrelated. Is it only accidental that the word infinite s used

in mathematics and also in theology? “The Infinite” is often used as a name for the Godhead.

Fig 158

Fig. 159

-~
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Some years ago, there was a well-known religious booi by the American, Ralph Waldo Trine,
with the title /n Tune with the Infinite. From the sphere of religion, this ticle expresses the ideas we have
been endeavoring to develop out of the realm of mathematics. All true knowledge is 2 unity, and a truch
in one sphere of human life and experience surely illuminates a truth in a different sphere. In fact, the
truth may be one and the same, and we simply recognize different aspects of it much in the same way
as when we look, say, at a tree, we perceive the reality of the tree only from one point-of-view.

Now, to return again to our geometrical considerations. The point and line obtained by the
triangle drawing are in pole and polar relationship. Here, the mediating conic section curve would be
an ellipse passing through the angular points of the smaller triangle and having the sides of the larger
triangle as tangents, that is, an ellipse circumscribed to the smaller triangle and inscribed in the larger
one. If the triangle is equilateral and the pole is at its center, then the ellipse becomcs a circle. In such a
particular case, the center of balance and the center of the circle circumscribed to the small triangle and
inscribed in the larger one are coincident. We may also consider this theorem as we have done with
previous ones as a degenerate case of either Pascal’s or Brianchon'’s theorems. Actually, however, it is a

particular case of one of the most fundamental theorems of projective geometry, to which the theorems

.of Pascal and Brianchon and pole and polar are closely related. This is known as the theorem of Desargues

after the French mathematician of that name to whom we have already referred as one of the pioneers
in this realm of geometry. Gerard Desargues was born at Lyons in 1593 and died in 1662; he was by
profession an engineer and architect, but he gave courses of lectures on geometry in Paris from 1626 to
1630, which made a great impression on his contemporaries. In 1636 he published a work on perspec-
tive, and this was followed in 1639 by his researches in pure geometry in which he laid the foundations
of what we now call projective geometry. His famous theorem may be stated as follow: If two triangles
A B,C, and A)B,C,, lying in the same plane, are such that the straight lines A\ A,, BB, C,C, meetin

the same point O, then the three points of intersection of the sides B,C|, B,C, and ClAl’ C A2 and

Bl, A2B2 lie in a straight line (0,0). Figs. 160, 161, and 1_62 illustrate the theorem.
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Fig. 161

Fig. 162




. Fig. 163
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Fig. 164
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The proof of Desargues theorem can only be achieved by going outside the planc of the two
triangles; that is, it is a three-dimensional proof, illustrated in Fig. 163. Through the point O, which is
common to the straight lines A|A, B,B,, C,C,, draw any straigh linc outside the plane @, and in this
straight line take two points S| and S,,. Project the triangle A|B,C, from S, and the triangle A)B,C,
from S,. The points A, A, O, S, §, lie in the same plane; therefore, S A and S,A, cut one another,
say in A. Similarly, S, B, and S,B, cut one another, say in B and §,C, and 52 p say in C. The straigh
lines BC, Blcl’ B,C, intersect in pairs and therefore meet in one and the same point, P (BC is the
intersection of the planes S, B C, and S,B,C,, which do not coincide, so that the straight lines BC,

1711

B,C,; B,C, do notall lie in one plane. The three planes BC.B,C,, BC.B,C,, and B,C,.B,C, (or w)

intersect in the same point ) Similarly, AC, A C,, A,C, meet in a point, Q, and AB, A Bl , A7B , meet
in a point, R. The three points P, Q, R lie in a straight line, which is common to the planes @ and ABC.
The theorem is, therefore, proved, and the picturing of the proof expressed as it is in different planes is
a fine exercise for the mathematical imagination.

We will now consider Desargues’ theotem in a somewhat different manner. Let us imagine five
points at random in space, each one joined to the other four by stralght lines and then these lines
produced to meet the plane of the paper. There will clearly be 10 such projecting lines or rays terminating
in 10 points in the plane of the paper. These points will lie in threes in straight lines, and there will
therefore be 10 straight lines. Thus we get a Desargues’ configuration. One such configuration is shown
in Fig. 163 by the points A, B, C, A, B,, C,, O, B, Q, Rin the planc w, which are formed by joining
the points Sl’ »AB,C (not in the plane (.0) each to each of the others and producing these lines on
to the plane @. Now it is a very interesting exercise to build up the Desargues’ configuration using only
the plane of the paper. Such a configuration is shown in Fig. 165, and what follows is a description of
this drawmg However, as it is somewhat involved we will consider first Fig. 164. We start with the
horizontal line and take three points at random in 1t——pomts (1,2), 3,1), (2,3). The notation (1,2),
and so. on, indicates the point at which the line joi}ling the points 1 and 2 (two of the five points in
space outside the p.lane of the paper) meets the plane of the paper. Thus the lines joining the points 1,
2, and 3 meet the plane of the paper in the points ( 1,2) (3,1) (2,3), and these three points must of

course lie in a straight line. We next bring into consideration point 4, and therefore take outside the

first line any point (1,4) and join this to point (1,2) and produce to any third point on this line, which
will be (2,4). These three points (1,4) (1 ,2) (2,4) are where the lines j ]ommg the 1, 2, and 4 meet the
plane of the paper. Next join points (2,4) and (2,3); then join points (1,4) and (3,1). Somewhere alorig
this last line must be the point (3,4); but the point (3,4) must also be on the line joining (1,4) and (3,1),

and therefore its position is fixed and determined unlike the other five points. This configuration of -

Fig. 164 is therefore the result of joining each of four points in space (no three of them being in the
same straight line) to each of the others. Producing the joining lines onto the plane of the paper, we see

that it is a quadrangle—four lines and six points. Now, finally, we consider point 5 in telation to the
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cther four points (see Fig. 165). Point(1,5), say, is c¢hosen at random; point (1,4) is joined to (1,5) and
the line produced to any point {4,5); join (2,4) and (4,5) and produce to (2,5), which is on the same
straight line as (1,2) and (1,5); thus point (2,5) is determined. Join (2,5) and (2,3) and (1,5) and (3,1)
and produce to meet in (3,5), which is therefore also determined; then we find that the remaining trio
of points (4,5) (3,4) (3,5) lie in a straight line (shown as a chain line). In Fig. 165, we sce that this

Desargues’ configuration consists of 10 points and 10 lines; this is confirmed mathematically by the
fact that there are 10 possible combinations of 5 numbers taken in pairs:

c, - Sx 4

= 10.
2x1

Three of the points lie on each of the lines, and three lines pass through each point. Thus we again have
a self-dual figure. '

e,

Fig. 165

Fig 166
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Much of what we have said about the theorem of Desargues, especially its proof in three
dimensions, requires quite a considerable capacity for spatial imagination. As a kind of confirmation of
what we have arrived at by our thinking and imagination, a mathematical model can be very helpful
and instructive. The making of such a model also requires skill and ingenuity, and there will always be

the boy or girl for whom such an activity gives great satisfaction. Fig. 166 is a picture of such a model.

One may make small spheres (about ¥4 inch in diameter) out of colored wax to tepresent the five points

in space, and these may be fixed by lengths of aluminum knitting needle stuck into a cork that is held
rigidly by a framework attached to the edges of the drawing board—that is, the plane, @, onto which
the projection is to be made. (“Meccano” is ideal for the framework.) Thén the lines joining the five
points and produced onto the drawing board may be represented by long knitting needles, and where
they meet the board (covered with a sheet of drawing paper), they may be fixed into position on the
paper with a small piece of plasticine stuck onto the paper with cellophane. The plasticine points are
then joined in three’s as shown (broken lines in Fig. 166), and we have a Desargues’ configuration. (The
pictu.e of the model does not show the cork holding the five wax spheres nor the framework supporting
it.) It should be mentioned that the choice of position of the five small spheres will be somewhat of a
problem, so make sure that the projecting knitting needles meet the drawing board. (We have, of
course, already drawn a picture of such a model in Fig. 163.) ‘

As we have seen, the Desargues’ conﬁgliration has 10 points and 10 lines; the 10 drawings of
Fig. 167 are all the same configuration (a plane view of the configuration in the model picture), showing
every possibility of pairs of triangles in the Desargues’ relationship. What a wonderful relationship this
is of lines and points in a plane—10 different cases of Desargues’ theorem all in the one configuration!
Here indeed is a kind of “magic” of space. .

Another very important theorem of projective geometry that again reveals the relationship of
lines and points in a plane is that of the harmonic quadrangle leading to the conception of harmonic
points. In a straight line, a pair of points A and B is chosen at random (Fig. 168). A pair of rays is drawn
from each of these points to form a quadrangular cell (shown shaded), and then the diagonals of the cell
are drawn to meet the straight line in P and Q. Now another pair of rays is drawn from A (shown below
the line) and a ray from P cutting them. Through these two cutting polnts, a pair of rays is drawn into
B forming a second quadrangular cell. Lastly, draw the other diagonal of this second cell, and it will be
found to fall on the line exactly at the point Q. The two cells thus formed are calied harmonic quadrangles,
and the pairs of points A,B and BQ are said to be harmonic points or harmonic conjugate pairs. The

cells are drawn on either side of the line for the sake of clarity of construction.
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Fig. 169 shows a family of harmonic quadrangles drawn below thefline. The cell origingl(y drawn is
shown in thick line, and the others arise q{xitc naturally from this cell by the above construction. We sec
at once that this is a perspective drawing. This becomes even more evident if we arrange the harmonic
conjugate pairs of points a little differently as in Fig. 170. It will be clear from the construction that if
a pair of points (A,B) is chosen and a third point (P) in the same straight line, then a fourth point Q in
the line is determined. Let us suppose that points A and B remain fixed. Then for every position of
point P, there is a definite position of point Q. As P moves along the line from B to the right, Q moves
from B to the left, and the further P goes, the nearer Q approaches the midpoint between A and B.
When P is at infinity, Q is exactly halfway between A and B (Fig. 171). Then as P returns from infinity
and approaches A more and more nearly (still moving in the same direction along the line from left to
right), Q gets closer and closer to A (still moving from right to left). Thus as P moves from B to A via
infinity, Q moves from B to A by the “short route.” This construction of Fig. 171 gives a very quick and
easy way of bisecting the distance between two given points without using compasses. Q is a balancing
point, a fulcrum if we think of a balance for weighing, between A and B. It is just this balancing point
that is related to a point at infinity, and we see once again how the infinite plays into the world of
physical space to create perfection of form, balance, and harmony. Fig. 172 is a simple perspective

drawing of a chessboard placed -vith two of its sides parallel to the horizon line and viewed straight

down the middle. Comparing this with Fig. 171, we see that the pair of points A and B are here the two -

“distance points” (D.P), and the point Q is the “center of vision” (C.V.). The point P is at infinity and

hence the lines parallel to the horizon line.

‘ Fig. 170




Fig. 171

Fig 172 .
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In a previous drawing, »éc have actually come across harmonic points. It is the pole and polar
construction with respect to a circle. Fig. 173 again illustrates this construction. The verical line through
P is the polar of the pole Q, and P and Q are conjugate harmonic points with respect to a second pair,
A and B (and these latter points are determined by the circumference of the circle cutting the line PQ).
That chis is so is shown by the fact that a harmonic quadrangle can be constructed with respect to these
two pairs of points A,B and BQ.26 Here again, we have a projective relationship, and therefore, harmonic

points will arise in connection with pole and polar in respect of any conic section curve.
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On the other hand, we can discover Desargues’ theorem Wichin the harmonic 8quadmnglc
construction. Fig. 174 begins with a repetition of Fig. 169, in that we have constructed a pair of
harmonic quadrangles KLMN and K'L'M'N". Now cach of these quad rangles with its diagonals contains
four triangles, for example, KLM, LMN, MNK, and NKL in the upper quadrangle. We will consider
a pair of corresponding triangles, one from cach quadrangle, say NKL and N'K'L. Join the corresponding
angular points of these two triangles (i.c., N'N, K'K and L'L), and we get three lines that lie in a point
(O). Now produce the corresponding sides (i.e., KN, K'N'; KL, K'L'; NL, N'L"), and we get three
points (A, B, and P) that lie in a straight line, and these points are three of the four harmonic points.
This is, of course, the theorem of Desargues, which is to be found expressed four times in all within the
figure because there are four pairs of corresponding triangles. The point O is the same for all four, but
the three points in a straight line will be A, B, and P for the pairs of triangles NKL, N'K'L' or NML,
N'M'L’, and A, B, and Q for the pairs of triangles KLM, K'L'M' or KNM, K'N'M".

This relationship of harmonic quadrangles and harmonic points to the theorems of pole and
polar and of Desargues agam shows us what remarkable connections there are among the various theorems
of projective geometry.

Just as a pair of points and a third point in a line determine a harmonic fourth point, so do a
pair of lines and a third line in a point (and in a plane) determine a harmonic fourth line. Here azain,
we have the principle of duality, and we will express the two constructions side-by-side and notice that
they are identical except for the interchanging of the words fine for point and point for line, as well as

two or three relevant words to make sense, for example, pass through is changed to /e in.

Harmonic Points in a Line (Fig. 175) Harmonic Lines in a Point (Fig. 176) |

Given a pair of points A,B and a third.point

~ 1Pinany line of a plane, we can draw any

I'so that five of their six lines pass two-by-two
through A and B and one through P. Then

their sixth line will always pass through one
and the same point Q of the originally given
line, and this is the point harmonically paired

| with P with respect to A and B.

| number of quadrarigles (KLMN) in the pl'an.e‘,;_

L -leen a pair of lines a,b and a thlrd line p in any -
» "pomt of a plane, we can draw any number of
f,quadnlarcrals (KLMN) in the plane, so that five

| of their six points lie two-by-two in a and b and |-

one in p. Then their sixth point will always lie
in one and the same line q of the originally

given point, and this is the line harmonically

| paired with p with respect to a and b.
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In our studies of projective geometry so far, all that we have done has been quite devoid of any
thought of measurement. Now these important and far-reaching conceptions of harmonic range of
points in a line and harmonic range of lines in a point lead us to consider metrical properties, not
arbitrarily, but arising out of the very nature of the relation of lines and points in a plane. We have
already come across such a metrical property in the special case of the harmonic quadrangle where the
point P is at mﬁmty (Fig. 171). Here we have seen that the point Q is midv/ay between the points A
and B. That is, by this construction we have bisected the distance AB, or in other words, we have halved
AB. If AB is considered of unit length, then AQ = QB = 1/ ; unit length, or if AQ is considered of unit
length then AB = 2 units.

In the above special and simple case, there is an exact felation between four harmonic points.
along a line, but this is not only true for a special case. The harmonic pair P and Q always divide the

distance between A and B internally and externally in the same proportion (see Fig. 175):

Q divides distance AB internally, giving the ratlo AQ: QB
P divides distance AB extemally, giving the ratio AP: PB

(In carrying out the “external” division we always have to reverse direction; that is, PB is negative, by

the usual sign convention.) Then
“(AQ:QB)=-(AP:PB) -

It should be noticéd that this ratio is always >1 when P is to the right (Q is then nearer to B than to A)
and is always <1 when P is to the left (Q is then nearer to A than to B), and the ratio will be nearer to
1 the further away P is in either direction. The ratio = 1 when P is at infinity.

Fig. 177 shows a harmonic range in which the ratio is
'_ 2:1.:—-AQ:QB‘='2:I:AP:PB;6:3=2:1

(neglecting the negative sign). Now the dual concepts of harmonic points in a line and harmonic lines
in a point (Figs. 175 and 176) are clearly interrelated and may ‘be illustrated in one and the same figure.
In Fig. 178, the harmonic lines of Fig. 176 are rcproduced and any line, o, is drawn, cutting them in
the points A, B, B, and Q. By the drawing of the harmomc quadrangle, we see that these points form a
harmonic range in the line o. ’

The converse of the above relationship s, of course, also true. That is, if we start with a harmonic
range of four points and confront them with a point O—an eye—outside the line, then the four rays

from this point to the four harmonic points will be harmonic (Fig. 179). This harmonic property can




be pojected from one lide or point to another as often as we please,
rematns unimpaired. For example, any other line (#)

range of points (A',B"; P,Q’) (see Fig. 190).

and the harmonic rclationship

cutting che four rays in Fig. 179 gives a harmonic

Fig. 178

Fig 179
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Now with four harmonic lines in a point there are also relationships of measure—this time
among the angles between the lines. As an example of this, we may refer to Fig. 180a. Here the bisectors
of an angle of a triangle cut the opposite sides in points that separate harmonically the vertices on that
side. It is a well-known fact of elementary geometry that the angle PCQ is a right angle. Thus the
measure of a right angle is associated with harmonic conjugate points.

If we compare this drawing with that of Fig. 176 we see that they are really the same except that
in this case one pair of harmonic lines is at right angles, and they bisect the angles between the other
pair. This configuration of harmonic lines is related to the symmetry of rectangle and rhombus, which
the children illustrated in their first geometry lessons. We refer to Fig. 36, where we see that the diagonals
of the family of thombuses are a pair of harmonic lines at right angles, bisecting the angles between the
second pair, which are the diagonals of the family of rectangles. )

This connection of an harmonic range of points with the measure of a right angle leads us to the
Apollonian circles, which we considered in Chapter 5 as the geometrical picture of the process of
division, that is, as curves expressing a constant ratio. Fig. 181 shows one such circle of Apollonius
having a constant ratio of 2:1 and 1:2; that is, if C is any point on the circle, then AC/BC 2/ The
focal points A and B are a conjugate pair with P and Q, the extremities of the diameter of the c1rcle,

the other pair. That is, the points A, B and P, Q are harmonic points in a line and furthermore the

harmonic ratio:
AQ:QB=AP:PB=2:1

We also notice that CQ and CP are the bisectors of the interior and exterior angies at C because the
angle QPC s 2 right angle (an angle in a semi-circle).

It will already have become evident to the reader that the relationship of harmonic conjugate
points plays a vital part in projective geometry. Indeed, it is one of the most fundamental theorems and
will appear again in what follows concerning the conic section curves. Before proceeding to this aspect

of our studies, we will consider a very important - physical application. All phenomena of symmetry and

 teflection are related to the conception of harmonic conjugate points. So, even the simple symmetry
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drawings of lietle children have a real connection with rhe basic ideas of projective geometry. Let us
consider one or two examples llustrating what we have indicated here. Everyone is familiar with the
distance relationships of image and objectin a plane mirror; the image is the same distance behind the
mirror as the object is in front. This physical fact may be expressed by saying that object and image
positions give 2 harmonic conjugate pair with respect to the mirror posmon and the point at infinity on
the axis as the other pair. (See Fig. 171, in which Q is the position "of the mirror, and A and B are the
positions of object and image.) Such a reflection is, of course, also illustrated in the symmetry drawings.

What about reflection in a spherical mirror? We have considered this in another connection in

the series of drawings (Fig. 128). Fig. 180b is a repetition of Fig. 1282 showing the relative positions of
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object and image for a concave spherical mirror (M being the position of the mirror). By cthe harmonic
quadrangle construction, we sec at once that object and image arc again a harmonic conjugate pair with
respect to the mirror and its center of curvatuse as the other pair. (The plane mirror relationship considered
above is really a special case since the plane mirror has its “center of curvature” at infinicy.) If the object
is at infinity—for example, a parallel pencil of light falling on the mirror—then the image is at the
focus F, midway between the mirror and its center of curvaure (sce Fig. 171). Fig. 180c shows the
construction for the image of an object in a convex mirror, and again the harmonic quadrangle
construction reveals object and image as a harmonic conjugate pair with respect to the mirror and its
center of curvature.

We may indeed say that the principle of harmonic conjugate points is the archetype for all

processes of reflection and considerations of symmetry.

We have seen in Chapter 7, and again in the present chapter, that the three curves of the conic

‘cections—the ellipse, the parabola, and the hyperbola—are related to one another by principles of

pespective and projection. In the particular case of four harmonic lines where two are at rxght angles

= blsectmg the angles berween the other two, we are: again led naturally and dJrectly to the conic section

_ curves In Flg 18'7 four harmonic lines are drawn (a, b,p.q q) so that one pair (p, q) is at right anglcs and.

. hcrcfore bisect the angles between: the other pa1r These harmonic lines gwe rise to a range of four

harmonic points (A,B,BQ) along the line d. These harmonic points in turn give rise to an harmonic -

'quadranglc KLMN with its points lying in pairs on the pair of harmonic lines a and b. We shall now
show that these four points K, L, M, N lie on 2 conic section curve. To do thxc., we have to prove that the

ratio of the distances of each point from the point F and from the line d is a constant, that is, that

KE:KK' = LF:LL' = MF: MM' = NF : MN".
(See definitions of parabola, ellipse, and hyperbola, Chapter 7.)
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Triangle KFN has its exterior angle at F bisected by line FP. |

Therefore: KF : NF = KP : NP (Euclid V1.3)

From similar triangles KPK', NPN'; KP : NP = KK' : NN' ;
Thus, KF: NF = KK' : NN'

That s, KF : KK' = NF: NN'

Similarly, by considering the other three triangles NFM, MFL, and LFK we find that

NF: NN'= MF: MM'

MF:MM'=LF:LL'and

LF:LL' = KF:KK' )
Thus, KF:KK'=LF:LL'= MF: MM' = NF: NN'
and therefore the four points K, L, M, N lie on a conic section curve.

In the particular case of Fig. 182, the points K, L, M, N are nearer to the point F (the focus)
than they are to the line d (the directrix); the constant ratio proved above is therefore <1, and thus the
points determine an ellipse. _

In Fig. i83, we have the case where the distances of the points from the focus F are greater than
their distances from the directrix d; that is, the constant ratio of their distang:es = 1, and therefore they

lie on a parabola.

Fig. 184
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To sum up then, the poines K, L, M, N in cach of the drawings of Figs. 182, 183, and 184
determine a conic section curve. In Fig. 182 they determine an ellipse because KF : KK = LF:LL =
MF: MM’ = NF: NN’ = a constant < 1. This constant is called the eccentricity of the curve. in Fig. 183
the four points determine as hyperbola because the eccentricity constant is > 1, and in Fig. 184 they
determine a parabola since the eccentricity = 1.

We will now construct the three curves applying the principle of harmonic points but also
bringing to our aid the Apollonian circle, which is the curve of constant ratio from two fixed points.
Our problem is to trace the locus of a point that moves so that its distances from a fixed point and a
fixed line shall give a constant ratio. First then, the ellipse (Fig. 185): Take a fixed point F (the focus)

and a fixed line d (the directrix) and choose a certain ratio < 1, say 2 : 3. We now have to find all points

whose distances from focus F are to their distances from directrix d in the proportion of 2:3. Two of

these points are A; and A, which divide the line FX, perpendicular to the directrix, internally and
externally in the proportion of 2:3. This means, of course, that the four points F, X and A, A, are
harmonic conjugate points. Through A and A, draw lines parallel to the directrix. Now draw any ray
through F cutting the directrix in Y and the two parallels in B, and B, Then from consideration of
similar triangles we see that E Y and Bl’ B, are also harmonic pairs; that is, FBlzBIY =FB,:B,Y=2. If
we now draw an Apollonian c.scle on BB, as diameter, this circle will contain all points whose distances
from the two points F and Y are in the same proportion, 2:3. Finally, from Y draw a perpendicular to
the directrix cutting the circle in P and P,. Then P, and P, are two more points that lie on the ellipse
because P F: P\Y=P, F: P, Y=2:3. (P,Yand P, Y are clearly the distances of P, and P, from the
directrix). '

By drawing many such circles for many rays through F {(their centers will aii iie in the vertical

broken line, which is the right bisector of A|A,), we may obtain as many points of the ellipse as we

please, and through these the curve may be drawn. We shall also find that all the circles will touch the

ellipse and envelop it and that the ellipse can never go outside any of the circles. Thus if we draw a
sufficient number of these circles, together they will mold the ellipse from the outside; that is, the curve

of the ellipse will appear as a boundary of spacc within ali the circles (Fig. 186).
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Fig. 186

Fig. 187
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To create a hyperbola, we repeat-the above construction, only this time the cccentricity ratio
must be >1; we choose the ratio 3:2. Now we see that the circles no longer “embrace” the curve, but
they nevertheless still mold it from the outside. That is, the curve of the hyperbola appears as a boundary
of space outside all the circles, although the circles are really, of course, outside the hyperbola (see Fig.
187).

Fig. 188 shows the same construction for forming a parabola. Here the point A2 is at infinity,
and the circles drawn upon infinite diameters become straight lines at right angles to these diameters.
The eccentricity ratio = 1. Once again, the curve—this time a parabola—is molded from the outside
but now by straight lines, that is, by circles of infinity diameter.

The forming of these curves has arisen out of the consideration of the special properties of the
harmonic quadrangle KLMN (see Fig. 182) with its right angles “diagonal triangle” (as it is called)
PFQ. We will now therefore start from a given conic (an ellipse) with focus F and directrix d and derive
the harmonic quadrangle and diagonal triangle (Fig. 189). Any quadrangle KLMN is drawn with its
four points on the curve and two of its lines KM and LN meeting in the focus E Then the other pairs
of sides KN, LM and KL,NM must meet in points P and Q respectively on the directrix; the diagonal
triangle PFQ has the directrix for one of its sides and the focus for its opposite corner, and moreover, it
is right-angled at the focus E. If the lines KM and NL cut the directrix in A and B respectively, then the
four points B, A, Q, B form a harmonic range along the directrix. We may sum this up by the statement
that any guadrangle of points on a conic section curve, having one of its three diagonal points at the focus, has
its other two on the corresponding directrix, and the diagonal triangle made of all three points is right-angled
at the focus. o

The focus and the directrix are, of course, always poleand polar w1th respect to the conic. Only
when we are considering the focus as the pole is the diagonal friangle rlght—angled. Fig. 189a illustrates
a more general case of pole and polar, where the diagonal triangle is not right-angled. Here we have a
quadrangle ABCD inscribed in a circle, and the diagonals AC, BD give the pole B and the opposite
pairs of sides produced give two points Q and R, which determine the polar. Thus, PQR is the dlagonal
triangle. Now there is a further important relationship, which is shown in this figure: the tangents at A,

B, C, D are drawn, giving a quadrilateral ab'cd c1rcumscnbcd to the circle, and this quadrilateral also

 determines the same pole and polar and rhc same dlagonal triangle. This may be summed up as follows:

230

Given a four-pomt figure ABCD, the pomts lymg on a conic, and a four-line figure a b ¢ d, the lines
being tangents to the conic at the points A, B, C, D, then these two figures have the same diagonal
triangle. This diagonal triangle may be considered as formed either of the three points DA.BC, DB.CA,
DC.AB, or of the three lines da.bc, db.ca, dc.ab. (The point DA.BC is the point where the lines DA

and BC intersect; the line da.bc is the line joining the point where the lines d and a intersect to the
point where the lines b and c intersect.)




Fig. 189
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Fig. 189a
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Fig. 189b is téhc particular case for a circle where the pole is at its center. The inscribed quadrangle

is then a rectangle, the circumscribed quadritateral is a rhombus, the polar is at infinity, oy
o o . ' re
triangle is again right-angled at the pole P with one of its sides in the infinite periphery. This figu

in itali i i is a circle.
illustrates the above statement in italics for the case where the conic section curve ts a
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Fig. 190
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Fig. 191

Fig. 192
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We have seen in the last few pages how the study of the conic section curves belongs essentially
to projective gecometry because these curves arise quite naturally from the relationships of lines and
points in a plane. They are inherent in the very nature of space, and their laws and properties are those
of space itself. The construction we have used for the conics depends on four points in a plane arranged
in such a manner that they give rise to a harmonic quadrangle having a right-angled diagonal triangle,
the right angle being at the focus of the conic. Now if we add another point to the four, the statement
about the construction of a conic is greatly simplified, for now we can say that any five points in a plane
determine a conic section curve so long as no three of them are in a straight line. This is a very remarkable
property: that through five points placed quite at random 'in a plane, an ellipse or a parabola or a
hyperbola can be drawn. Such a construction of a conic is essentially a projective one, and before we
embark upon it we will consider certain aspects of projection and perspective. ‘

Suppose we have, say, four points along a straight line, and, as we have been dealing with
harmonic ranges, we will arrange these four points in harmonic pairs (although such an arrangement is
not essential to what we wish to show). Fig. 190 then gives such an ordering of four points A, Q, B, B
in a line x, such that AQ:QB = AP:PB = 2:1. If we now view these points from any eye—point E and
project them onto another line x, parallel to the first one, then we get another harmonic range A}, Q;,
B, Pl, which has the same ratio of 2:1 as the original one. This is clear from a consideration of sirﬁilar
triangles. Now we view this second range from another random eye-point E, and project it on to
another line x, drawn obliquely to the direction of the other two, giving points A, Q,, B,, P, These
points are also a harmonic range though with a different ratio from the other two. A third eye-point E,
projects the points in line x, into another oblique line x5 giving a further harmonic range A3, Q3. B3,
P, with again a different ratio from the previous ones. We see from this that however many projections
we may make, the principle of the harmonic range caunot be destroyed, although the ratio of the
harmony can be changed with every projection (see Fig. 179). - o :

- We shall now construct the conic secticn curves using five points placed at random and applying
a sequence of projections. Fig. 191 illustrates the construction. The five given points are A, B, P,, P,
P;, and they are joined in pairs as shown giying (in this case) a pénmgrm. Two of the points A and B
are chosen as eye-points or “raying-out” points, and the other three Pl.’ P,, and P, serve for ﬁxing the
rays. Rays from A give points (e.g., point L) in line P"2P3; these points are viewed fzom eye-point O and
projected into line PP, (e.g., p‘dint M). These points in turn are projected from eye-point B into the
original rays drawn from A (e.g., point X, which will be a point lying on the conic section curve
through A, B, P, P,, P,). Thus every ray frora A corresponds to a ray from B, and the common peints
of each pair of A- and B-rays all lie on a conic section curve, in this case an ellipse. We have described
the construction in detail, and we will not obtain enough points by the above method to draw the
ellipse. We can, of course, choose any pair of points from among the five for '{:ye—points and a

corresponding point O, so as to obtain the points we require as easily as possible. Fig. 192 shows a




whole series of points, and it is clear that they lic on an ellipse. In finding these points we have used four
of the “star-points” of the pentagram in turn for the mediating cye-point O because this is more convenient
and saves using the lines of the pentagram beyond the star-points. Figs. 193 and 194 show a parabola
and hyperbola formed by the same construction. (In these last three drawings, the construction for only

a limited number of points is shown. Otherwise there would be too great a confusion of construction

-1 lines.)

Fig. 193

Five points, then, in a plane (no three of thém in a straight line) détcrmine a conic. Under what
condition does any sixth point lie on the curve? The answer to this question leads us again to the
theorem of Pascal: The addition of a sixth point on the curve determined by the given five points means
that we have a hexagon whose opposite pairs of sides must meet in three points lying in a straight line.
In Fig. 195, the five points A, B, C, D, E determine the conic, and a sixth point P is added to the curve.
We see that the oppositc pairs of sides 1,4 and 2,5 and 3,6 meet in three points on the Pascal line, and
moreover, one of these points is the mediating eye-point O used in the projective construction of the

curve (see Fig. 191). It will be noticed that according to the position chosen for the point P, the Pascal
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line will pass through one of the five star-points of the pentagram. Thisleads ustoa modiﬁcc‘ construction
for a conic section curve using five random points and five lines determined by these points. The five
points are chosen (Fig. 196) and joined by lines 1, 2, 3, 4, and 5. Lines 2 and 5 meet in point (2,5), and
lines 1 and 3 meet in point (1,3). These two points determine a Pascal line, p, and line 4 cuts this line
p in the point (4,t); the line joining this latter point (4,t) to the point 2 is a tangent to the conic at the
point 2 (see Fig. 150a). In a similar manner, the other four tangents may be drawn at points 1, 3, 4, and
5. In our figure, the five Pascal lines are shown in solid line, the five tangents in broken line, and the
lines joining the five points in chain line. Thus we have five points and five tangents at these points, and
this enables us to draw the conic with considerable accuracy. We may now modify this construction by
joining the five random points pentagram-wise instead of pentagon-wise, and this enables us to draw a
larger conic in a smaller space (Fig. 197). The chain lines joining the five points pentagram-wise are
numbered 1, 2, 3, 4, 5 just as were the lines joining the points pentagon-wise in Fig. 196. The drawing
of Fig. 197 is carried out in exactly the same way as that of Fig. 196. We have now shown thata conic
section curve may be constructed pointwise by a sequence of projections or perspectives, and by this
method we can get as many points as we please, all of them lying on the conic. From this we next
developed a method of drawing a conic, with fair accuracy, through five points and touching five
tangent lines, the positions and directions of the five lines being dependent on the choice of the five
points. Here we have a partly pointwise and partly linewise construction, and this will give us again a
further example of the principle of duality. There follows a concise description of the pointwise
construction (Fig. 191) and side-by-side with it the same description interchanging the words poin¢and
line (or 7ay). It will be seen that this second description applies to the linewise construction of a conic

shown in Fig. 198.

Fig. 194




e R ot T

i e
e e R

-

Fig. 195

s
LN




240

=



W
"



 lines. Again, as in the case of the pointwise constructions, we can select any pair of the five chosen Jines
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Projective Consrruct‘on of Conic Section

Curve through Five Given Doints

Projecrive Construction of Conic Secticn

Curve Using Five Given Lines

Five given points: A, B, P, P, P,
chosen as raying points and the other
three points P, P,, P, serve for fixing

the corresponding rays of A and B.

A-rays give points in line P,, D,.
These points give rays into the point O,

and these rays in turn give points in line P,, P,.

Lastly, these latter points give corresponding

points in line b.
Thus every A-ray corresponds to a B-ray.
The common points of each pair of A- and
B-rays all lie on a conic section curve

" (here an ellipse, Fig, 198).
The point O is the mediating point and
is the common point of the two lines AP,

and BP,.

If we had chosen not A and B

but two other points as the raying points,

we should still have arrived at the same curve.

Five given lines: a, b, p,, p,, Ps

Two of these lines a and b chosen as ranges of
g
points and the other three lines p,, p,, p, serve

for fixing the corresponding points of a and b.

Points in line a give rays into point (p,,
ps). Thesc rays give points into the line o,

and these points in turn give rays into the

- point (p,, p,).

Lastly, these latter rays give corresponding

points in point B.

Thus every a-point corresponds to b-point.

"The common lines of each pair of a- and

b-points envelop a conic section curve.

The line o is the mediating line and is the

common line of the two points (ap,) and (bp,).

If we had chosen not a and b but tw:) other

lines as a series of giving rays, we should still

“have arrived at the same curve.

Figs. 199, 200, 201 show the actﬁal molding of ellipsé, parabolé, and hyperbola by this envelope of

as the series of points through which we draw rays and the corresponding o-line. In the case of the

hyperbola drawing (Fig. 201), the two lines crossing between the “wings” of the hyperbola. are not the

asymptotes.
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In these consrructiogls of the conic sectiof curves by sequences of projections, we see how the
curves are molded or formed from the outside and the foci are not used, whereas in most of the ordinary
constructions we start from the inside of the curve from the foci (sce Chapter 7). This molding of forms
from the outside belongs essentially to this geometry because projective geometry concerns itself with
the pure rclatiénships of points, lines, and planes in space.

In earlier drawings (Figs. 19, 26-27, 5663, 136), the children experienced this forming of
curves by the interweaving of straight lines. It is of real educational value when the teacher can refer to
work that has been done perhaps several years ago and show the children the connection between what
they did then and the work now in hand. It will be noticed that there are a number of such cross-
references in this book.

The fact that the conic section curves arise quite naturally from the pure relationship of lines
and points in a plane again reveals to us how fundamental these curves are to our understanding of the
nature of space and to the manifold natural forms we see around us.

' This chaprer is the longest one in this book, but even so only the fringe of the subject has been
indicated, and much remains to be done in the educational field in bringing these “new” geometrical
ideas into school studies. The author is convinced from his own experience in teaching this subject to
older children that it should form an essential part of a school curriculum not merely because it is an
interesting and fascinating geometry, but because of its wide cultural value, first in enabling us to gain
a fundamental understanding of the world of space and spatial forms, and second, in the wide and
manifold application of its forms of thought to the realm of human experience. In recent years, a
number of mathematicians in different countries have come to realize the far—r_ea_ching importance of
this geometry, even rccbgnizing that it is the “geometry of the future.” We have alicady referred to the
work of Gebrge Adams who, in his recent research, has shown -how the forn}s of -li\(ihgquganisms
(especially those of the plant kingdom) are to be understood only in relation to projective geometry.

There are indeed indications that projective geometry will be the means by which mathemarticians

and scientists will come to 2 new and more fundamental understanding of phenomena of the earth and

of the whole universe. In his excellent book Mathematics in Western Culture (Geo. Allen & Unwin Lid.,

1954), Morris Kline, towards the end of his final chapter on ;‘Mathemati_cs: Method and Art,” writes as
follows: S R

In any artistic creation the relation of the parts to each other and of the parts to the
whole must be harmonious. The harmony in mathematical creations is partly intellectual
in the form of logical consistency. The theorems of any one mathematica! system must
be in complete accord with each other. There are, however, other harmonics. The entire
structure of Euclidean geometry is in harmony with the mathematics of number. By
means of co-ordinates it is possible to interpret geometrical concepts and theorems
algebraically. Conversely, algebraic equations have a geometric interpretation. Thus the
two creations are harmonious with each other.

AR
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Major mathematical themes have been harmonized with each other. In our
brief survey we have touched 6n four distinct branches of geometry—Euclidean,
projective, and two non-Euclidean geometries. As we have viewed these subjects they
appear distinct and in some cases inconsistent with each other. Nevertheless, one of the
most satisfying mathematical contributions of recent times has shown that it is possible
to erect projective geometry on an axiomatic basis in such a way that the theorems of the
other three geometries result as specialized theorems of projective geometry. In other words,
the contents of all four geometries are now incorporated in one harmonious whole.”’




POSTSCRIPT

Duri.ng the past 50 years, the methods used in the teaching of geomerry have gradually but
radically changed. The basic school lessons that I had in this subject during the years of the First World
War consisted of learning a considerable number of the propositions of Euclid and rheir proofs, in
*\:&E much the same form in which they were first enunciated nearly 2,300 years ago, and then solving

problems—*“riders”—connected with these proofs. This teaching of “classical geometry” changed little |
durmg many centuries of education, say, from the monast1c schools of the Middle Ages down to quite
recent times. As an educational method it was, of course, considered a fine training for the powers of
logical thinking because Euclidean geomciry izself was regarded asa wonderful edifice built up with the
strictest logic on a foundation of simple axio;natié statements. Modern critical research has however
revealed that this “structure” is by no means sound, even its foundations being suspect. Thus, strict
“Euclid” has largely disappeared from the school curriculum, and the great variety of textbooks that has
) appeared during the past 20 or 30 years shows how teachers of mathematics are trying to find new
methods of presenting geometrical facts and laws. A new. edifice is being attempted, built on ﬁrmer .
: »foundatlons and using pethaps better materials than those of Euclid. Amid all this change, it is impor-
‘tant to notice that the kmd of thmkmg of the archlrects is unchangcd The forms of thought being used

inthe teachmg of geometry today are fundamentally the same as those inherent in Euclidean geometry.

(Here and there, with individual teachers, there are exceptions to this generalizaiion.) Now these forms
»of thought are just those which Alexis Carrel said must be transformed before we can “undertake the
restoration of ourselves and our environment.” '

In a lecture given in 1919, Rudolf Steiner made the following fateful pronounccmcm “Let
teaching in our universities go on in the present way for another three decades; let thinking on social
O matters, as taught today, continue for another thirty years and, at the end of these thirty years, you will

find Europe in a state of complere desolation and destruction. . .. Unless a transformation of thinking
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takes place, Europe will be overwhelmed by a flood of immorality.””® The reader will notice that 30
years after this lecture was given, Europe was struggling to recover from the devastation and chaos
caused by the Second World War.

Many writers and thinkers in various countries have expressed with real conviction the basic
problem facing humanity today, the problem is coming up with and exercising a new way of thinking,
But few of them tell us what new qualities must come into our thinking, and fewer still cell us how we
are to overcome our old habits of thought. Rudolf Steiner has done both these things, and new forms of
thought and how we may attain them lie at the foundation of all his teaching. It is not my task in this
book to discuss this vital challenge of the transformation of human thinking; I would refer my readers
to the works of Rudolf Steiner, especially The Philosophy of Spiritual Acthty and The Redemption of
Thinking (see List of Selected Books).

These problems are indeed the concern of all school teachers. It is our present and future task to
present our various subjects in the classroom so that the possibility arises for our children to grow into
new ways of thinking as they become older—into a thinking that has a fine imaginative quality, that is
comprehensive. ‘

I have tried to show that such ways of thinking are inherent in the presentation of geometry as
outlined in this book. What I have described are only “stepping stones” towards the path along which
the teaching of this subject must surely go in the future, and I am firmly convinced that this will be the
path of projective geometry. It is undeubtedly the case that the true logical buildup of this geometry
can also Supply just this element in education, which the classical Euclidean geometry cannotdo. In the
last chapter I have suggested how some of the fundamental aspects of projective geometry may be
presented to older children. The question now arises if such ideas and thought-forms can be introduced
to younger children. I am sure they can, in an indirect way, and I have given some indications of how
this may be done. For example, in quite elementary work, childrer: of 12 and 13 can learn to construct
curves. linewise as ‘well as pointwise (see Chapter 3). In so doing, they are already experiencing the

polarity of point and line in a plane as well as the nature of some of the fundamental curves that they

will study in a more detailed way later. Or again, the drawing of Fig. 36 in Chapter 3 is related to that
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of Fig. 180 in Chapter 8. By a careful choice of early drawmgs, much could be done to bring the
teaching of this subject i into the “one harmonious whole” of projective geometry, and this, I would

suggest, is the present and future task of teachers of mathematics.
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